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CHAPTER 1 
 
 

PRECISION MEDICINE WITH IMPRECISE THERAPY: COMPUTATIONAL 
MODELING FOR BREAST CANCER THERAPY  

 
 
1.1 Introduction 

On May 25, 1961, President Kennedy proposed to Congress that the United States should 

commit itself to “landing a man on the moon and returning him safely to earth” by the end of the 

decade. Similarly, on December 23, 1971, President Nixon signed into law the National Cancer 

Act and stated it was time for the concentrated effort that resulted in the lunar landings to be turned 

towards conquering cancer. Of course, Neil Armstrong first set foot on the lunar surface on 

July 20, 1969, yet 46 years after Nixon’s announcement we have made only modest advances in 

controlling this disease. This is particularly striking with the renewed lunar-centric announcement 

of the Cancer Moonshot Initiative by former President Obama in his 2016 State of the Union. A 

fundamental difference between the planetary and cancer moonshots is that the basic mathematics 

for gravity were known for nearly three centuries at the time of Kennedy’s speech, while we still 

do not have a mathematical description of cancer that allows us to compute the spatiotemporal 

evolution of an individual patient’s tumor. In the current state of oncology, we are tasked with 

getting to the moon without knowing F = ma. 

Precision medicine is the concept of incorporating patient-specific variability into 

prevention and treatment strategies (1). The advent of precision medicine has brought significant 

advances to oncology. The majority of these efforts have focused on the use of genetics to classify 

and pharmaceutically target cancers (2). This approach has led to a paradigm in which tumor 

genotypes are matched to appropriate treatments (3,4). For example, the addition of trastuzumab, 

a monoclonal antibody targeting the human epidermal receptor 2 (HER2) protein, to 

chemotherapeutic regimens in breast cancer patients with HER2-positive disease has resulted in 

improved disease-free and overall survival (5). While the current genetic-centric approach to 

cancer therapy has great merit in appropriately selecting therapies and identifying new 

pharmaceutical targets, it can frequently overlook a host of patient-specific measures that influence 

response to therapy. For example, the microenvironment of the tumor alters response (6), delivery 

of therapy to tumors is variable as tumor perfusion is limited (7,8), and patient-specific 
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pharmacokinetic properties vary (9,10). Furthermore, the schedule on which therapy is given may 

significantly alter response (11–13). These issues may be partly responsible for the high attrition 

rates of proposed cancer therapeutics (14). 

The goal of precision medicine is to tailor therapeutic strategies to each patient’s specific 

biology. More specifically, we define the goal of precision medicine to be the use of the optimal 

dose of the optimal therapy on the optimal schedule for each patient. Under this interpretation, 

there is an opportunity to expand precision oncology beyond the tumor-genotype-driven selection 

of therapy. The challenge facing expansion of precision oncology into the dosing and scheduling 

realm is two-fold. First, new hypotheses related to optimal dosing and scheduling are needed. 

Whereas the hypotheses in genetic studies often compare tumor volume changes to a static genetic 

marker, dosing and scheduling require temporally-resolved hypotheses and concomitant treatment 

response measures. In particular, such hypotheses would need to specify quantitatively how the 

tumor microenvironment and/or patient pharmacokinetics influence response to therapy in order 

to adapt therapeutic approaches to measured responses. Second, biomarkers are needed to provide 

clinically-relevant insights into tumor behavior and to inform these new hypotheses. Fortunately, 

the tools to probe cancer from the genetic to tumor scales have rapidly matured over the past 

decade. While more time is needed to fully understand and contextualize the micro-, meso-, and 

macro-scale data coming online, several groups have demonstrated the utility of new technologies. 

For example, advances in imaging technologies, such as diffusion weighted magnetic resonance 

imaging (DW-MRI) and dynamic contrast enhanced MRI (DCE-MRI), have led to the discovery 

of clinically-relevant biomarkers that are predictive of response (15). To rephrase the second 

challenge, new approaches are needed to synthesize available biomarkers to test new hypotheses. 

We (and others (16–18)) believe that mathematical modeling holds the potential to not only 

improve our ability to treat cancer, but it will also allow precision cancer care to enter the dosing 

and scheduling domains. 

A goal of mathematical modeling is to abstract the key features of a physical system to 

succinctly describe its behavior in a series of mathematical equations. In this way, the system can 

be simulated in silico to further understand system behavior, generate hypotheses, and guide 

experimental design. When experimental data is available, model predictions can be compared to 

those data. The model can then be iteratively refined to account for data-prediction mismatches. 

Models can also identify high-yield experiments in cases where an exhaustive investigation of 
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experimental conditions is infeasible (19). Traditionally, cancer models are built off of first order 

biological and physical principles, such as evolution (20) and diffusion (21). Part of the recent 

excitement about applications of mathematical models to cancer is the discovery of higher-order, 

emergent properties that any one model component does not possess (22). For example, cancer 

models have been constructed to investigate the role of tumor cell-matrix interactions in shaping 

tumor geometry and in enhancing selective pressures (23). Fundamentally, models built from these 

first principles are designed to discover new biological behaviors and principles, identify new 

hypotheses for further investigation, and predict the behavior of cancer systems to perturbations. 

These models are tuned with any available data and simulated to discover system properties (18). 

However, the majority of these models are not structured to leverage currently-available clinical 

data to make patient-specific predictions (24). Often, these complex mechanism-based models 

have been limited to in silico exploration, and their utility in generating patient-specific predictions 

remains to be investigated. 

There is an opportunity to reverse the modeling approach. Instead of modeling cancer from 

first principles, models can be built to predict the changes in clinically-available tumor 

measurements. Models need not be “true” to be useful; as George Box famously noted, “all models 

are wrong, but some are useful” (25). Medical oncology is in need of a mathematical, mechanism-

based modeling framework in order to leverage all available clinical information, spanning from 

tumor genetic to tumor imaging data, to make impactful changes on patient management (26). In 

this way, models can be used to make specific and measurable predictions of the response of an 

individual patient to an individualized therapeutic regimen. While these models will be “wrong,” 

in that they will not explicitly consider all scales of biological interactions, they may be of practical 

utility by consolidating clinically-available data sources into a coherent understanding of tumor 

growth and treatment response. 

The interaction of matter is governed by weak nuclear, strong nuclear, gravitational, and 

electromagnetic forces just as the behavior of cells is governed by genetics. However, for 

macroscopic objects traveling at speeds much less than the speed of light, F = ma is an excellent 

approximation of the movement of those objects. While the understanding of fundamental physical 

laws is still being advanced, a complete understanding is not necessary to leverage classical 

mechanical models to engineer mechanical tools (such as a rocket to lift astronauts to the moon). 

There is an opportunity in oncology to develop an analogous “classical oncology” toolkit. We posit 
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that a complete understanding of cancer is not necessary to create tools that leverage clinical data 

to improve the treatment of cancer. This toolkit will likely consist of “simple” models that 

approximate the behavior and treatment response of tumors. Fortunately, the tools to make 

analogous force measurements in cancer already exist.  

This perspective will highlight the utility of modeling and discuss opportunities for 

modeling in breast cancer treatment. We begin by reviewing the use of mathematical models in 

clinical oncology, including those used in radiation oncology. We draw parallels between dose 

planning in radiation therapy and chemotherapy and propose how mathematical modeling 

approaches can leverage current technologies to more precisely use anti-cancer chemotherapies. 

We then highlight opportunities for investigation in the clinical evaluation of response in the 

context of patient-specific modeling. To limit the scope of this perspective, we will focus on 

cytotoxic chemotherapeutics (defined below). It is the goal of this perspective to provide guidance 

and highlight opportunities for a classical oncology toolkit. 

 

1.2 Models for Clinical Oncology 

We now examine the use of mathematical models in both medical and radiation oncology. 

Specifically, we will focus on the theory and models used to define chemotherapy administration 

schedules and dose. While surgical oncology has incorporated mathematical modeling approaches, 

especially in image-guided surgical approaches (27), such discussion falls outside of the scope of 

this perspective. We review these concepts in the context of our definition of precision medicine: 

the use of the optimal dose of the optimal therapy on the optimal schedule for each patient. 

 

1.2.1 Medical Oncology 

Cytotoxic drugs, which are designed to inflict lethal insults on rapidly-dividing cells, were 

among the first pharmaceuticals used to treat breast cancer (the first clinical trial started in 

1958 (28)), and they remain a critical component of current therapeutic regimens. The modern era 

of chemotherapy was born from the observation that mustard gas induced myelosuppressive states 

and was effective in treating hematologic malignancies (29). Dosing schemes with these agents all 

follow a common pattern: cycles of a high dose nearing the maximum tolerated dose followed by 

a recovery period. The goal of this strategy is to maximize tumor cell kill, while trying to minimize 

adverse effects via drug holidays between each cycle. While tumors often respond to these 
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therapies, there is a high rate of tumor recurrence. For example, the 5-year progression free survival 

rate for triple negative breast cancer (TNBC) patients is 61% (30). Furthermore, cytotoxic 

therapies often have lasting effects on survivors, adversely affecting their quality of life. For 

example, doxorubicin, a standard-of-care therapy for the treatment of TNBC, is associated with 

cardiomyopathy (31). 

When cytotoxic therapy was first applied to cancer, few mathematical principles existed to 

guide its use (32). While the cytotoxic properties of these agents had clearly been demonstrated in 

animal models, the subsequent translation into a human population lagged behind. Skipper first 

observed the relationship between tumor size and treatment response when he discovered leukemia 

response to therapy to be proportional to the number of malignant cells (33). He hypothesized that 

each dose of treatment kills a fixed percentage of tumor cells. This necessitates repeated dosing 

strategies to increase the odds of tumor eradication. In essence, he defined the log-kill hypothesis. 

Specifically, the log-kill hypothesis is defined: 

 ( ) ( )log logSF TN N k= −   ,  

where NSF is the fraction of tumor that survives treatment, NT is the tumor size at the time of 

treatment, and k is the efficacy of treatment. This model assumes the tumor is composed of a 

homogeneous mixture of cells equally sensitive to treatment, and a fixed fraction of those cells are 

killed with each treatment. Despite the relatively simplicity of the model, its practical implication 

was profound: chemotherapies should be delivered several times, even after the disappearance of 

macroscopic tumors, to eradicate all tumor cells. This was a departure from the current practice of 

the time, in which chemotherapeutic agents were given over a short course to treat solid 

tumors (28). Skipper’s observation challenged this paradigm, and multi-dose treatment regimens 

were supported by subsequent clinical trials in the 1970’s (34,35), forming the basis of modern 

adjuvant and neoadjuvant chemotherapy approaches. Subsequently, investigators sought to 

improve response through dose escalation. The dose escalation trials were met with limited 

success, as several agents demonstrated a saturated response curve at high doses (36,37).  

Investigation into the scheduling of therapeutics was advanced when Norton and Simon 

hypothesized that tumors grow according to Gompertzian kinetics (38,39). Specifically, 

Gompertzian growth can be expressed: 

 ( ) ( ) ( )dN t
BN t I t

dt
=    
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 ( ) ( )
( )

log
dI t N t

dt N t
∞=   ,  

Where N(t) is the tumor volume at time t, B is the growth rate of the tumor, I(t) is a function 

describing how the growth rate slows as the tumor volume approaches some maximum volume, 

N(t∞), as t approaches infinity. Qualitatively, these equations indicate that tumors grow 

exponentially, with an exponentially decreasing growth rate. Treatment response was assumed 

proportional to tumor growth rate, with smaller, faster growing tumors responding more robustly 

to treatment than larger slower-growing tumors. In the context of Gompertzian growth, treatment 

at time trx can be modeled as: 

 ( ) ( )( ) ( ) ( )1 i

dN t
D t BN t I t

dt
= −   

 ( )
0,
0,

rx
i

rx

t t
D t

t t
<

= > ≥
 ,  

where Di is the magnitude of the anti-tumor effect of treatment i, regardless of its functional form 

(radiotherapy, chemotherapy, immunotherapy, etc.). Norton and Simon noted that the functional 

form of D would be specific to the intervention (38). As this is a description of tumor volume, 

these parameters describe the multifactorial response to therapy, including the effects of cell death, 

removal of cells, attraction of leukocytes, etc. For tumors treated with multiple doses of 

chemotherapy, the treatment term, D(t), is proportional to the integrated drug concentration, C,  

and the sensitivity of the tumor to the current therapy, k: ( ) ( )
0

t

t

D t k C dτ τ∫≈  (40). Similar to the 

log-kill model, the Norton-Simon hypothesis is relatively simple yet impactful. The model 

indicates that chemotherapy is best delivered to small, fast-growing tumors on a dose-dense 

schedule, minimizing the time between treatments. This approach limits the regrowth of tumors 

between treatments, meaning smaller tumors are being treated. Per the model, smaller tumors grow 

more quickly, rendering them increasingly responsive to treatment thereby maximizing therapeutic 

effect. This approach was validated in a clinical trial (11).  

Multi-agent regimens were introduced in order to address tumor heterogeneity, in the hopes 

of eliminating tumor cells resistant to single agent therapy. Following the Goldie-Coldman 

hypothesis, which proposes that multi-agent chemotherapies should be delivered in alternating 

courses (e.g., ABABAB instead of AAABBB) to minimize the probability of developing 
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resistance (41), empiric schedules of administration for these multi-agent regimens were tested in 

clinical trials (42). While multi-agent regimens demonstrate improved efficacy relative to single-

agent treatments, the scheduling of therapeutics remains an open question. For example, in trials 

investigating the reordering of treatments to avoid development of resistance according to the 

Goldie-Coldman hypothesis, the schedules that delivered therapy most quickly (regardless of 

order) were found to be superior (42). While different schedules have been hypothesized to 

significantly impact response (13,43,44), empiric schedules remain as a matter of practicality as 

there exist innumerable combinations of drugs and schedules that cannot be tested clinically. 

While several more complicated models of tumor growth and treatment response have been 

proposed in the literature (45), the models highlighted have been the only to penetrate clinical 

practice. We suppose these have gained traction because each provided a precise, clinically-

testable hypothesis for improved cancer treatment. However, these models are limited to making 

general predictions for the use of chemotherapy. Further, the above hypotheses were developed to 

maximize the rate of tumor cell kill, which is assumed to improve long-term, disease-free survival; 

however, growing evidence suggests this may not be the optimal therapeutic approach (46). 

The dosing of chemotherapeutics also has a mathematical basis. Doses of 

chemotherapeutic agents are often personalized through use of patient body surface area 

(BSA) (47,48). BSA was first proposed as a guide for chemotherapy dosing by Pinkel, noting that 

the accepted cytotoxic dose for pediatric and adult patients, and the dose used in laboratory animals 

correlated with BSA across those scales (49). This approach has been advocated by the Food and 

Drug Administration, recommending BSA be used to scale preclinical in vivo doses to patients in 

phase I clinical trials (50). Several BSA models have been developed over time, primarily differing 

in the coefficients used in their calculation. For example, a common formulation, which was 

proposed by Gehan and George (51), defines BSA as: 

 0.422246 0.514560.02350 height weightBSA = × ×  , 

where the coefficients in this function are derived from BSA measurements from 401 individuals. 

While a BSA-based dosing strategy is of great practical utility for calculating doses for each 

patient, BSA correlates poorly with the underlying physiological processes that affect drug 

pharmacology (e.g., liver metabolism and glomerular filtration rate) (52). Specifically, BSA has 

been found to correlate poorly with patient pharmacokinetic properties for several 

chemotherapies (53). For example, in a study of 110 patients receiving doxorubicin therapy, 
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doxorubicin clearance was found to weakly correlate with BSA (r = 0.34). Further, the reduction 

in variance in doxorubicin clearance when normalized by BSA was only 0.8%, meaning that only 

a small fraction of the variance in clearance can be attributed to BSA (9). Despite the weak 

relationship between BSA and pharmacokinetics for several therapeutics, BSA remains widely 

used to guide dosing in the clinic. 

 

1.2.2 Radiation Oncology 

Similar to chemotherapy, radiation therapy was once delivered in a single, high dose (54). 

Contrary to chemotherapy, in which a theory of treatment response was established prior to 

changes in therapeutic application, radiation doses were quickly fractionated to account for 

excessive toxicities in healthy tissue. Briefly, radiation therapy leverages ionizing radiation to 

damage the DNA of tumor cells (although recent research suggests lower-dose radiotherapy may 

primarily target the cell membrane or cytoplasm) (55). The DNA damage induced by radiation can 

lead to immediate cell death via apoptosis, senescence, autophagy, or necrosis or a delayed cell 

death via mitotic catastrophe (56). 

The interaction of photons with DNA can be physically modeled as a stochastic process. 

The probability of the number of photon-tissue interactions can be described using Poisson 

statistics: 

 ( )
!

D ne DP n
n

−

= , 

where P(n) is the probability of n interactions, and D is radiation dose in units of Gray (defined to 

be one joule of energy absorbed per kilogram of matter). If a single interaction is assumed to result 

in cell death, the probability of survival (n = 0) is simply e-D. For viruses, bacteria, and very 

sensitive human cells, it is an appropriate model of survival (57). However, this model fails to 

describe survival in other human cell types. For these tissues, the linear-quadratic (LQ) model was 

found to be the most parsimonious model that fit the observed survival curves (57,58). The LQ 

model is expressed as: 

 ( ) 2D DP survival e α β− −= , 

where α and β are radiosensitivity parameters, and D is dose. As β approaches zero, the LQ model 

approaches the Poisson model of cell survival. The LQ model can be used to characterize the 

radiosensitivity of different tissues with two parameters (α and β). One potential biological 
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interpretation of the linear-quadratic model is offered by the lethal-potentially lethal damage (LPL) 

model (59). The LPL model posits that the linear portion of the LQ model are cells that receive 

non-repairable lethal lesions after a single hit (radiation dose). The quadratic portion is 

representative of repairable lesions that may eventually die to subsequent lesions or misrepair.  

The LQ formalism can be used to explain why fractionated radiotherapy was superior to 

single doses (there are additional biological rationales for the use of fractionated therapy (60), but 

these have yet to be formalized into a mathematical modeling framework). Fractionation 

approaches leverage differential radiosensitivities of tissues (i.e., tumor and healthy tissues) to 

maximize efficacy while minimizing off-target toxicities. In planning treatment schedules, the 

effect of therapy on the tumor (generally high α/β ratios) must be balanced with both the acute and 

long-term toxicities of surrounding, healthy tissue (lower α/β ratios). For a fixed duration of 

treatment, the isoeffect doses (i.e., doses that have an equivalent biological effect) of different 

fractionation schedules can be compared (61): 

 ( )
( )

12

1 2

dD
D d

α β
α β

+
=

+
,  

where Di is the total dose for each fractionation scheme, di is the dose per fraction, and α/β is a 

measure of tissue-specific radiosensitivity. For late-responding healthy tissues (i.e., for tissue with 

low α/β), the total isoeffective dose increases more quickly than acutely-responding tissue (i.e., 

high α/β) when doses are hyperfractionated (i.e., smaller doses with more fractions). This means 

that fractionation schedules allow for higher isoeffective doses in tumor tissues compared to 

surrounding healthy tissue. For this reason, radiotherapy is typically given at low doses over 

several sessions to maximize tumor dose and to minimize damage to healthy tissue. For example, 

in head and neck cancer with high α/β ratios (>7 Gy) (62),  a hyperfractioned schedule has been 

shown to be superior to conventional schedules with fewer fractions (63). While patient-specific 

biology underlies the α/β parameters for tumors and surrounding tissue, interpatient variability in 

parameters is often not considered in clinical practice, yielding a single schedule for many patients 

receiving radiotherapy. For example, some tumors demonstrate similar α/β ratios to the 

surrounding healthy tissue. Specifically, breast cancers have relatively smaller α/β ratios 

(4 Gy) (62). In this case, a schedule using higher doses and fewer treatment sessions 

(hypofractionation) may be superior (64). 
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 In addition to its explicit consideration of off-target toxicities, radiation therapy differs 

from chemotherapy in dose planning. As noted above, in radiation therapy, dose is defined as the 

energy absorbed per unit mass. This differs from the use of “dose” in chemotherapy as the amount 

of drug given to the patient (not necessarily the amount of drug delivered to tissue). Radiation dose 

planning involves leveraging patient-specific anatomy to maximize dose delivered to the tumor 

while minimizing off-target effects (65). As the physics governing tissue irradiation are well-

characterized, physical models can be defined to estimate spatially-resolved radiation dose prior 

to treatment. Several algorithms have been developed to efficiently calculate dose distribution for 

each patient (66). Generally, these methods model photon interactions (e.g., photoelectric effect 

and Compton scattering) to simulate the energy absorbed by tissue. Several of these methods 

leverage a Monte Carlo approach to estimate spatially-resolved dose estimates, simulating the path 

of each photon through tissue probabilistically with a random number generator (67). Briefly, the 

probability that a photon will travel a distance l without undergoing any interactions can be 

defined: 

 ( ) 1 lP l e µ−= − ,  

where µ is the attenuation coefficient, which is a function of photon energy (E) and the physical 

properties of the material the photon encounters:  

 ( ) ( )i
A i

i i

wE N E
A

µ ρ σ
 

=  
 

∑ ,  

where ρ is the mass density, NA is the Avogadro constant, wi the elemental weight (i.e., fractional 

composition) of element i in the material, Ai is the atomic mass of element i, and σi is the total 

cross section for element i (which is a value describing element-photon interactions such as 

Compton scattering) (68–70). By modeling these interactions, spatially-resolved dose maps and 

the corresponding uncertainty in those estimates can be calculated. Importantly, the uncertainty in 

radiation dose translates into uncertainty in tumor control probability (71). While this relationship 

depends on tumor-specific dose response curves, Boyer and Schulteiss estimated that the cure of 

early stage patients increases 2% for every 1% improvement in accuracy of dose delivery (i.e., 

spatially-resolved dose deposition) (72). 

Critically, X-ray computed tomography images, which generate spatially-resolved µ 

values, can be used to estimate the tissue parameters needed for Monte Carlo simulation of dose 

distribution (70). This modeling framework allows for the use of patient-specific imaging data to 
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design patient-specific dose plans. Indeed, Rockne and colleagues demonstrated how imaging data 

can be used to estimate radiation response parameters to design treatment schedules that maximize 

tumor response in glioblastoma (17,73). 

 

1.3 Current Opportunities in Modeling Systemic Therapies 

A key step in the evolution of precision cancer therapy will be understanding interpatient 

variability in drug delivery and drug response and using those differences to personalize drug 

dosing and administration schedules (74). Mathematical models can be used to explore these 

relationships. However, model behavior is reliant on the parameter values used in model 

evaluation, and many of the variables in proposed models are difficult to measure clinically (19). 

This presents a fundamental hurdle in the translation of these approaches into clinical practice. If 

these models are dependent on un-observable data, the utility of these models in making patient-

specific measurements and predictions is greatly reduced.  

There is a need to develop methods to measure the biological processes underlying 

treatment response variability. These measurements can then be used to parameterize predictive 

mathematical models to optimize treatment plans. Just as the linear-quadratic model can be used 

to characterize the radio-sensitivity of tissue, models can be applied to clinically-available data to 

derive measurements of tumor behavior. Below, we reimagine the use of cytotoxic chemotherapies 

in breast cancer considering this interpatient variability, applying lessons learned from radiation 

oncology to the technologies available clinically.  

While the differences in chemotherapy and radiotherapy are apparent, we note fundamental 

similarities between these modalities. First, several commonly-used chemotherapeutics, such as 

doxorubicin and cisplatin, are DNA-damaging agents. The response to these therapies can 

reasonably be compared to the DNA damage of photon therapy. Second, both chemotherapy and 

radiation therapy share a fractionated dosing schedule. While there exists a formalism for dose 

fractionation in radiation therapy with the linear-quadratic model, chemotherapies lack a widely-

adopted quantitative approach to dose scheduling that balances tumor efficacy with off-target 

effects. 

In our opinion, one of the more prominent discrepancies in these treatment modalities is 

their respective definitions of dose. There may exist practical reasons for this difference. An 

external radiation beam can be accurately tuned and targeted, and the physics of photon 
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interactions are well-understood. Alternatively, medical oncologists must leverage patients’ 

circulatory systems to delivery therapeutics to tumors. While the pharmacokinetic properties of 

patients can be measured, this delivery method is inherently more imprecise. However, as we 

highlight below, the technology to estimate patient-specific pharmacokinetic and 

pharmacodynamic (PK/PD) properties may already be available clinically. 

 

1.3.1 Therapeutic drug monitoring 

Therapeutic drug monitoring (TDM) is the concept of adjusting therapeutic doses on a 

patient-specific basis to maximize drug efficacy. Paci et al. reviewed the relevance of TDM in the 

use of cytotoxic anticancer drugs (75). They argue that the use of cytotoxic drugs meet the 

prerequisites for TDM, specifically: 1) a large variance in inter-patient PK parameters, 2) a defined 

relationships between PK and PD parameters, and 3) a delay between PD end-point and time of 

measurement of plasma concentration. For several cytotoxic agents dosed by BSA, 

pharmacokinetic measurements among patients may vary over an order of magnitude (53). Given 

the high variability in PK properties and the narrow therapeutic window (i.e., the range of drug 

doses that can effectively treat a disease process without having toxic effects) for cytotoxic agents, 

this variability may be a cause for treatment failures (76,77). For example, significantly better 

outcomes were observed in children with B-lineage acute lymphoblastic leukemia when 

chemotherapy was dosed to reflect patient-specific clearance rates instead of BSA (78). 

The concentration of drug in blood plasma can be measured via a variety of clinical 

chemistry techniques (e.g., immunoassays or chromatography (79)), and these measurements can 

be used to parameterize pharmacokinetic models that describe the absorption, distribution, 

metabolism, and excretion of a therapeutic agent (80). Compartment models are often employed 

as pharmacokinetic models. In the context of pharmacokinetics, compartment models separate the 

body into physiologically-defined volumes (e.g., blood plasma, liver, kidney) that are each 

assumed to be homogenous with respect to drug concentration. These compartments are defined 

to communicate with each other with a set of rate constants. Such physiology-based 

pharmacokinetic models have been leveraged to describe the pharmacokinetics of several anti-

cancer agents including doxorubicin (81). For example, a simple pharmacokinetic model that 

describes transfer of drug between the blood plasma and tissue can be defined: 
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where CB and CT are the concentrations in the blood plasma and tissue, VB and VT are the volumes 

of the blood and tissue compartments, respectively, kBT is the rate constant describing the 

movement of drug from the blood into tissue, kTB is the rate of drug movement from tissue back 

into blood, and ke is rate at which drug is eliminated from the tissue. 

Measurements of plasma drug concentrations offer an alternative to BSA to more precisely 

account for inter-patient variability in drug pharmacokinetics. For example, Bayesian methods 

have been employed to leverage limited blood plasma samples to estimate an individual’s 

pharmacokinetic properties (82). These a posteriori estimates can be used to guide future dosing 

of therapeutics. Indeed, some clinical trials have leveraged simple PK/PD models to optimize 

therapy for patients (83,84). Alternatively, a priori dose adjustments can be made leveraging 

covarying patient properties. For example, carboplatin clearance was found to strongly correlate 

with kidney function, allowing for an empiric formula based on glomerular filtration rate (a 

measure of kidney function) to be derived for dosing (85). Using these approaches to populate 

pharmacokinetic models will help reduce inter-patient variability and will play a role in the 

realization of personalized drug treatment schedules (80,86). 

 

1.3.2 Tumor-specific drug distribution 

Inducing and sustaining angiogenesis is a hallmark of cancer (87). Tumor vasculature is 

often morphologically and functionally immature. Relative to a healthy vasculature, tumor 

vasculature is tortuous and leaky with numerous blind endings and arteriovenous shunts. This 

impairs delivery of nutrients causing local microenvironmental changes that alter the response to 

therapy (6,88,89). Further, significant heterogeneity in perfusion exists within a tumor, impacting 

both tumor growth and drug delivery (90). Differences in treatment response may arise due to 

variability in tumor perfusion.  

Tumor vasculature can be assessed with dynamic contrast enhanced magnetic resonance 

imaging (DCE-MRI). In DCE-MRI, a series of images are collected before and after a contrast 

agent is injected into a peripheral vein. Each image represents a snapshot of the tumor in time. 

Each voxel in the image set gives rise to its own time course which can be analyzed with a 

pharmacokinetic model to estimate physiological parameters such as the contrast agent transfer 
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rate (Ktrans, related to vessel perfusion and permeability), the extravascular extracellular volume 

fraction (ve), and the plasma volume (vp): 

 ( ) ( ) ( ) ( )

0

ep

t
k ttrans

t p p pC t v C t K C e d− −τ= + τ τ∫ , 

where Ct (t) is the timecourse of the concentration of contrast agent in the tissue of interest, and 

Cp (t) is the timecourse of the concentration of contrast agent in the blood plasma (91).  

DCE-MRI parameters have been shown to be predictive of tumor response to therapy (92). 

DCE-MRI data have been used in mechanistic models to estimate local nutrient and drug gradients 

within tumors. For example, in a model of treatment response in breast cancer, increased 

heterogeneity on DCE-MRI was identified to be a predictor of poor treatment outcomes. The 

increased transport heterogeneity was found to be associated with increased tumor growth and 

poor drug response (93). In theory, DCE-MRI data could be coupled with patient-specific PK 

measures (i.e., plasma drug concentration timecourses) to create tumor-specific drug distribution 

maps. Tagami et al. realized the goal of estimating intratumoral drug distribution through a related 

MRI approach which employed drug encapsulated with an MRI contrast agent. Changes in MR T1 

relaxation time were measured and correlated with distribution of drug within tumors (94). 

Coupling measurements of tumor vasculature with mathematical models of drug diffusion through 

tissue (95) will allow for the modeling the response of tumor cells to therapy to be decoupled from 

the tumor vasculature, thereby removing a source of variability in patient response. 

 

1.3.3 Tumor-Specific PD Modeling 

The efficacy of cytotoxic agents is defined by their ability to induce tumor cell death. Even 

within a clinically-defined grouping of tumors (e.g., triple negative breast cancer), there exists 

significant differences in tumor sensitivity to treatment (96). The assessment of tumor 

pharmacodynamics is limited to unidimensional tumor changes as defined by the Response 

Evaluation Criteria in Solid Tumors (RECIST (97)). Briefly, RECIST focuses on changes in the 

sum of the longest dimension of tumors to assess response to treatment. These changes in tumor 

size are temporally downstream effects of therapy, limiting the utility of this approach to adapt 

treatments based on patient-specific tumor measurements. The ability to assess tumor response to 

treatment in real time is needed to adapt therapy schedules to maximize the odds of treatment 

success.  We now describe three technologies that have been used to monitor treatment response 
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upstream of tumor volume changes: diffusion-weighted magnetic resonance imaging (DW-MRI), 

fluoro-deoxyglucose positron emission tomography (FDG-PET), and circulating tumor DNA 

(ctDNA) samples. 

Cellular changes within the tumor precede tumor volume changes. In DW-MRI, the 

diffusion of water molecules through tissue is measured and described by the apparent diffusion 

coefficient (ADC). This modality relies on the thermally-induced random movement of water 

molecules (known as Brownian motion). In tissue, this movement is not entirely random as water 

molecules encounter a number of barriers to diffusion (e.g., cell membranes and extracellular 

matrix), and the observed diffusion largely depends on the number and separation of barriers that 

a water molecule encounters. DW-MRI methods have been developed to measure the ADC at the 

voxel level, and in well-controlled situations the variations in ADC have been shown to correlate 

inversely with tissue cellularity:  

 ( ) ( )water

water min

,
,

ADC ADC x t
N x t
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θ
 −
 =
 −
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 , 

where ( ),N x t  is the number of tumor cells at position x  and time t, ADCwater is the ADC of water 

at 37° C and ADCmin is the minimum observed value that corresponds with θ, the carrying capacity 

of each voxel (98). Changes in tumor ADC precede tumor volume changes, providing an early 

biomarker of treatment response (99). 

Changes in tumor metabolism can precede tumor morphology changes and may be 

predictive of treatment response in breast cancer (100). FDG-PET provides a measure of glucose 

metabolism in tumors. In FDG-PET, 18F-FDG is injected into a peripheral vein. As it circulates, 

the FDG is transported into cells and phosphorylated, trapping the FDG within cells. As 18F-FDG 

decays, it emits positrons, which annihilate with nearby electrons. Each annihilation yields two 

(nearly) antiparallel 511 kEV photons, which are detected and used to map FDG distribution. 

FDG-PET data are summarized by the standardized uptake value (SUV), which normalizes for 

patient weight and injected dose as follows: 

 SUV
/
r

a w
=

′
 , 

where r is the measured radioactivity activity concentration in a region of interest, a′  is the decay-

corrected amount of injected radiolabeled FDG, and w is the weight of the subject (101).  



 16 

Tumors continually shed DNA into the bloodstream during the course of tumor 

development. These circulating tumor DNA (ctDNA) samples potentially may serve as “liquid 

biopsies,” providing measurements on the mutational status of tumors, assessment of treatment 

response, and guidance for therapy selection (102–104). Notably, these data have been shown to 

be an early predictor of relapse in breast cancer patients (105).  

 Taken together, these measurements of tumor pharmacodynamics can be leveraged to 

parameterize models to describe the tumor response to treatment. For example, since ADC changes 

following treatment are predictive of ultimate treatment response (106), our group has 

demonstrated how ADC values can be used to estimate response rates of tumors: 
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where ( ),N x t  is the number of tumor cells at position x  and time t and k is the spatially-dependent 

growth rate (21). This measure of tumor response can be combined with the assessment of off-

target hematologic toxicities, providing a pathway to personalize chemotherapy schedules through 

PK/PD optimization (107). Similarly, Liu and colleagues have incorporated SUV measurements 

derived from FDG-PET imaging into a predictive tumor growth model (108). ctDNA data can be 

used to track tumor genetic changes and populate evolutionary dynamics models to predict 

treatment response (18). The above technologies present independent means to assess tumor 

response to therapy. With appropriate mathematical models incorporating the data from these 

modalities, real-time adjustment of therapeutic schedules in response to tumor changes may be 

possible. 

 

1.4 Vision for Systemic Chemotherapy 

Given the goal of delivering the optimal therapy on the optimal schedule for each patient, 

we highlighted some potential tools for realizing that goal in Section 1.3. As noted above, overly 

complex models, which require several parameters to be estimated for each patient, present a 

difficult task in translation to a clinical population. Radiation oncology relies on a relatively 

simplistic approximation of dose response to develop treatment schedules. Potentially, such simple 

models may improve the use of chemotherapy by integrating currently available measurements of 

treatment response. It is our vision that a classical oncology toolkit be available to clinicians, to 
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leverage measurable patient data to not only select appropriate treatments but also optimize the 

schedule on which those therapies are given (Figure 1.1). 

 

Figure 1.1: Vision for systemic chemotherapy. Following diagnosis and staging of a cancer, a 
patient is evaluated clinically with a panel of imaging tests and bloodwork. These data that quantify 
various tumor properties, drug pharmacokinetics, and off-target toxicities are used to parameterize 
a mathematical model of treatment response. This model can then be leveraged to identify optimal 
treatment plans. This process is repeated throughout the course of treatment to yield treatment 
plans that co-evolve with the patient’s tumor. 

 
 

Following diagnosis and staging of tumors, the patient would be evaluated with a panel of 

imaging tests and bloodwork. Following an initial round of therapy (and, on occasion, through the 

course of therapy), the testing is repeated, providing data to initialize and constrain predictive 

models of treatment response. A pre-defined objective function that balances tumor efficacy with 

off-target toxicities is then parameterized with the patient-specific data and optimized to identify 

a patient-specific treatment schedule. Simply, the objective of cancer therapy is to maximize 

survival while minimizing morbidity. Formally, we define: 
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where x is the therapy schedule, f is the functional relationship between tumor behavior and 

survival, and g is the functional relationship between off-target toxicities and survival. Fortunately, 

the toxicity limits of various tissues have been defined, and clinical assays have been developed 

to monitor those toxicities. For example, hematologic toxicities can be measured through blood 

sampling. Cardiotoxicity can be assessed through electro- and echocardiography. Thus, the 

function g can be defined. However, Tumor(x), how a tumor responds to treatment plan x, and f, 

the relationship between survival and tumor behavior, must be defined. If these functions can be 

defined, a robust literature for optimization problems already exists (109). Thus, the question 

becomes, “How can we use (for example) the technologies highlighted above to define and 

parameterize these functions?” 

 

1.5 Next Steps 

Medical oncology is in need of a mathematical modeling toolkit that can leverage 

clinically-available measurements to optimize treatment selection and schedules in the same way 

radiation oncologists use clinically-available imaging data for treatment planning. Just as the 

therapeutic choice has been optimized to match tumor genetics, the delivery of those therapeutics 

can be optimized based on patient-specific PK/PD properties. 

Under the current approach to breast cancer therapy, there does not exist an efficient 

method to consolidate biomarker changes into a holistic understanding of treatment response. 

While the majority of research on chemotherapy resistance focus on cellular and genetic 

mechanisms of this resistance, there are numerous patient-specific and tumor-specific measures 

that contribute to resistance. New approaches that consolidate multimodal information into 

actionable data are needed. Mathematical modeling offers a solution to this problem. As 

highlighted above in Section 1.2, mathematical models have already shaped the current approaches 

to treatment, and mathematical models will continue to push cancer therapy in the era of precision 

medicine. We emphasize that this approach leveraging a host of patient-specific data is entirely 

complementary to genetics-based approaches and merits the same attention.  
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Traditionally, dose and schedules have been optimized to maximize tumor kill rate. There 

are new theories for the design of chemotherapy. For example, in the adaptive dosing approach, 

the objective of therapy is to maintain tumor volume (20). In metronomic therapy, the goal of 

therapy is to normalize tumor vasculature to enhance therapeutic effects (12). The dose schedules 

needed to realize these approaches will rely on patient-specific PK/PD measurements. By 

developing the tools to estimate PK/PD parameters, these hypotheses for chemotherapy use may 

be evaluated more efficiently. Further, it is reasonable to envision improvements in maximum 

tolerated dosing schemes with patient-specific treatment regimens. 

The Cancer Moonshot Initiative (110) highlights the opportunity that exists by adopting 

screening and treatment plans known to work on a wide-scale basis. There is a need for such 

implementation science in the development and deployment of cancer therapeutics. While tumor 

genotype most likely plays an outsized role in determining response, other measurable factors such 

as tumor microenviroment and patient pharmacokinetics also influence response. The extensive 

characterization of tumor genetics has yielded an arsenal of therapeutics that can more precisely 

target cancer cells. An equally focused approach to the science of deploying these therapeutics on 

an optimal schedule is now needed. In the dosing and scheduling domains, we are in a similar 

position to cancer therapy prior to the advent of genotyping technologies. Advances in clinical 

chemistry and imaging sciences offer platforms to develop biologically-driven, treatment response 

models while maintaining the ability to translate those models to a clinical population. These tools 

will provide the measurements needed to test various dose and scheduling hypotheses. 

Mathematical models will form the foundation of this approach, and they will hasten the 

implementation and maximize the benefit of current (and future) therapeutics. 

 

1.6 Thesis proposal 

Much work remains to define the models that describe the relationship between delivered 

therapeutic and subsequent response – both at the tumor and off-target tissues. Specifically, models 

are needed to describe how changes in clinically-available measurements relate to tumor (and 

healthy tissue) response to therapy. Revisiting our earlier analogy, what is the F = ma for cancer? 

We have the means to measure tumor “mass” and “acceleration” (i.e., the multifactorial response 

of a tumor to therapy). Further, we can measure treatment “force” (i.e., drug pharmacokinetics). A 

modeling framework that relates these variables would offer the opportunity to adjust and optimize 
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treatment regimens to maximize response. Clinically, assessment of response is limited to imaging 

data evaluated via RECIST or histopathological evaluation at the time of surgery. Neither of these 

approaches considers the dynamics of therapy response. Accordingly, the conclusions drawn from 

single observations are limited. Ideally, the assessment of tumors should integrate the entire history 

of tumor measurements to draw the most precise insight into tumor behavior. Developing the 

knowledge basis needed to integrate temporal changes requires a new experimental paradigm – 

one with an emphasis on time-resolved experiments. Motivated by these fundamental questions, 

we propose to develop a mechanistic model of treatment response of triple negative breast cancer 

to doxorubicin therapy. We identify the following Specific Aims to achieve this goal: 

Aim 1: Development and validation of an in vitro model of doxorubicin treatment 

response in TNBC. The goal of Aim 1 is to establish a computational model of doxorubicin 

treatment response in TNBC using in vitro data. Tumor response to therapy is dynamic; therapy 

triggers a cascade of responses that result in temporally downstream changes in tumor status. 

However, measurements of treatment response are often limited cell survival assays at a single 

time point following a constant application of therapy (111). In Aim 1, we propose an 

experimental-mathematical modeling paradigm that incorporates both the dynamics of therapy 

(pharmacokinetics) as well as the dynamics of cellular response (pharmacodynamics). The 

proposed model establishes a robust, mechanistic relationship between doxorubicin 

pharmacokinetics and pharmacodynamics and allows for prediction of response to a specified 

treatment. 

Aim 2: Extension of the model to incorporate agents that alter doxorubicin 

pharmacology. In Aim 2, we leverage the mechanistic PK/PD model to quantify the effects of 

agents that alter cellular pharmacological properties. Specifically, we investigate the effects of 

small molecule inhibitors (i.e., sensitizers) that target cellular pharmacokinetics and 

pharmacodynamics to enhance the response to doxorubicin. We assess treatment response under 

co-treatment with sensitizing agents and doxorubicin, and we demonstrate the utility of the 

mechanistic modeling approach which consolidates contributions of pharmacokinetics and 

pharmacodynamics into a holistic understanding of treatment response. We propose the equivalent 

dose metric as a means to summarize the effects of combination therapy and serve as a more robust 

means of comparing treatment response among cell lines. We hypothesize that the proposed 

modeling framework can be used to identify more effective strategies for dosing and assessing 
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these sensitizing therapeutics, which have often failed clinically due to toxicity or inactivity despite 

preclinical promise (112–116).  

Aim 3: Incorporation of cell population heterogeneity into model. In Aim 3, we 

leverage the proposed PK/PD model to quantify the effect of cell population heterogeneity on 

treatment response. Tumors are composed of heterogeneous populations of tumor cells that 

demonstrate a range of sensitivities to treatment (117). This intratumoral heterogeneity drives the 

response of tumors to therapy (118), and it has significant consequences in precision medicine 

approaches which seek to match treatment protocols to biopsy data (119). We study heterogeneity 

in the context of multi-drug resistant breast cancer in which resistance is mediated through 

expression of the multi-drug resistant 1 protein (120). We demonstrate that the response of a 

heterogeneous cell population to doxorubicin is nonlinear, and intercellular pharmacokinetic 

variability must be considered in analyzing treatment response in heterogeneous cell populations. 

Goal: The primary goal of this Dissertation to establish a robust mathematical model of 

doxorubicin treatment response in an in vitro model of triple negative breast cancer. We propose 

a modular mathematical framework that is easily extended to capture increasing levels of 

experimental complexity. Finally, we will demonstrate how coupled experimental-mathematical 

modeling approaches lead to a more precise understanding of treatment response. 

 

1.7 Outline 

In this Dissertation, we detail the development of predictive model of treatment response 

in triple negative breast cancer. This chapter has provided the background and motivation for the 

work. In Chapter 2, we detail development and validation of the coupled PK/PD model of 

doxorubicin treatment response proposed in Aim 1. In Chapter 3, the model is extended to 

incorporate approaches that modulate cellular PK/PD properties to sensitize cells to doxorubicin 

therapy. In Chapter 4, the model is once again extended to describe treatment response in a 

heterogeneous cell population. In Chapter 5, we summarize the major findings in this Dissertation 

and provide recommendations for future model development. Finally, we include an Appendix 

that details the preliminary data collected to scale the proposed model in vivo. 
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CHAPTER 2 
 
 

A PREDICTIVE MATHEMATICAL MODELING APPROACH FOR THE STUDY OF 
DOXORUBICIN TREATMENT IN TRIPLE NEGATIVE BREAST CANCER 

 
 
2.1 Introduction and Contribution of Study 

This chapter focuses on the development of a coupled pharmacodynamics/pharmacokinetic 

(PK/PD) model that can be leveraged to predict cell population response to doxorubicin therapy. 

While doxorubicin has been in clinical use for several decades, to our knowledge, measurements 

of its cellular effects have not previously been coupled to intracellular concentrations and drug 

exposure times in a predictive framework. Model development was achieved through a data-driven 

approach, leveraging several cell lines. A biophysical model was constructed to describe the 

collected data, and predictions were possible by the effective description of treatment conditions 

by the PK model.  

These studies address a fundamental limitation in the current understanding of the 

pharmacokinetic and pharmacodynamic properties of cytotoxic agents. While the potency, 

efficacy, and mechanism of action of these agents have been the target of study for years, these 

pharmacologic properties are inherently insufficient to predict the spatiotemporal response of 

individual tumors to treatment, limiting the ability to realize a host of theoretical dosing schedules. 

We show here that a combined PK/PD modeling approach allows for prediction of the in vitro 

response of a panel of TNBC cell lines to doxorubicin therapy. This work enables cell-line specific 

model parameters to be estimated from experimental data, revealing phenotypic heterogeneity in 

PK/PD properties not previously quantified. Further, the PD properties were found to vary as a 

function of CB,max and AUC, summary statistics of doxorubicin PK. More generally, this work 

provides a template for studies quantitatively investigating treatment response and a scalable 

approach toward predictions of tumor response in vivo. This work was published in Scientific 

Reports in July, 2017, and text in this chapter is adapted from: 

 

Matthew T. McKenna, Jared A. Weis, Stephanie L. Barnes, Darren R. Tyson, Michael I. Miga, 

Vito Quaranta, Thomas E. Yankeelov. “A Mathematical Modeling Approach for Predicting the 

Response of Triple Negative Breast Cancer to Doxorubicin.” Scientific Reports (2017). 
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2.2 Abstract  

 Doxorubicin forms the basis of chemotherapy regimens for several malignancies, including 

triple negative breast cancer (TNBC). Here, we present a coupled experimental/modeling approach 

to establish an in vitro pharmacokinetic/pharmacodynamic model to describe how the 

concentration and duration of doxorubicin therapy shape subsequent cell population dynamics. 

This work features a series of longitudinal fluorescence microscopy experiments that characterize 

1) doxorubicin uptake dynamics in a panel of TNBC cell lines, and 2) cell population response to 

doxorubicin over 30 days. We propose a treatment response model, fully parameterized with 

experimental imaging data, to describe doxorubicin uptake and predict subsequent population 

dynamics. We found that a three compartment model can describe doxorubicin pharmacokinetics, 

and pharmacokinetic parameters vary significantly among the cell lines investigated. The proposed 

model effectively captures population dynamics and translates well to a predictive framework. In 

a representative cell line (SUM-149PT) treated for 12 hours with doxorubicin, the mean percent 

errors of the best-fit and predicted models were 14% (±10%) and 16% (±12%), which are notable 

considering these statistics represent errors over 30 days following treatment. More generally, this 

work provides both a template for studies quantitatively investigating treatment response and a 

scalable approach toward predictions of tumor response in vivo. 

 

2.3 Introduction 

 When cytotoxic therapy was first applied to cancer, few principles existed to guide its 

use (121). Skipper provided a framework through the formulation of the log-kill hypothesis, 

postulating that a given dose of chemotherapy would kill a fixed fraction of tumor cells regardless 

of tumor size (33). Based on this framework, a systemic chemotherapy paradigm was established, 

in which cytotoxic agents were administered several times, even after disease could no longer be 

detected. Following this, investigators sought to improve response through dose escalation, but 

their efforts were met with limited improvement in tumor response (36,37). Dosing paradigms 

were updated after Norton and colleagues hypothesized that tumor kill is proportional to tumor 

growth rate (39). This led to development of dose-dense schedules, which decrease the time 

between doses to target smaller, faster-growing tumors. These dose-dense schedules resulted in a 

significant improvement over previous treatment protocols (122) and remain the standard-of-care 
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for triple negative breast cancer (TNBC) treatment. In recent years, several theoretical models have 

been developed to further refine treatment regimens (80). Of note, Gatenby and colleagues 

proposed an adaptive model which adjusts doses based on tumor volume changes (20,123). 

Metronomic dosing schedules advocate smaller, more frequent dosing (12,124). These new dosing 

approaches are predicated on both the timing of therapy administration and response 

evaluation (125) but have revealed a fundamental limitation in the current understanding of the 

pharmacokinetic (PK) and pharmacodynamic (PD) properties of cytotoxic agents. While the 

potency, efficacy, and mechanism of action of these agents have been the target of study for years, 

these pharmacologic properties are inherently insufficient to predict the spatiotemporal response 

of individual tumors to treatment, limiting the ability to realize these theoretical dosing schedules. 

In this contribution, we propose a scalable experimental/modeling framework that 

incorporates the dynamics of therapy and response. In this way, we hope to complement theoretical 

dosing models with a precise approach to scale in vitro observations to in vivo experiments. The 

utility of this framework is demonstrated in the context of doxorubicin treatment in TNBC. 

Doxorubicin is a standard-of-care, DNA-damaging agent used in the treatment of a host of 

malignancies, including TNBC (126–128). As we review below, the current approaches to the 

study of doxorubicin are insufficient to generate temporally-resolved predictions of TNBC 

response to time-varying doxorubicin treatments. 

Cellular response to a given therapeutic is often evaluated by one of a variety of in vitro 

assays and generally interpreted using dose-response curves. In these assays, drug is typically 

applied to a cell population over a wide range of concentrations. Following a predefined treatment 

time (usually 72 hours) drug effect is quantified with one of many end-point assays that measure 

the number of viable cells (often indirectly). These data are then analyzed with the Hill equation, 

a sigmoidal function that is used to describe the relationship between drug concentration and drug 

effect (129). The Hill equation contains a number of free parameters including: the maximal drug 

effect (Emax), the concentration of drug that yields a half-maximal effect (EC50), the effect in the 

absence of drug (E0), and the Hill coefficient (h), which describes the slope of the dose response 

curve. The parameters that result from the best fit of the model to the dose-response curves are 

specific to each cell line, and those data are used to guide drug dosing for subsequent in vivo 

experiments. While this approach has great merit in evaluating drug efficacy and identifying new 

therapeutics, it necessarily overlooks the importance of the relative timing of treatments and 
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response measurement. Further, slight changes in experimental duration or growth conditions have 

been shown to significantly impact estimation of model parameters (130,131). Even proposed 

metrics that analyze population rates of change to correct for varying cell line behaviors and 

experimental protocols assume a constant population rate of change following application of 

therapy (130,131). Consequently, the predictive potential of such approaches is fundamentally 

limited, particularly in the setting of cytotoxic agent use in vivo, in which agents are applied as 

impulses and resilient populations, which demonstrate temporally-varying population growth rates 

following therapy, are often observed. 

Relative to the efficacy studies above, the temporal relationship between cytotoxic 

treatment and its effects has received little attention. Eichholtz-Wirth and colleagues first 

demonstrated the dependence of cell survival on doxorubicin exposure time, deriving an empirical 

relationship between surviving fraction of cells (SF), drug concentration (c), and length of 

exposure (t), through a sensitivity constant (k): SF = e-ktc (132). Others have proposed 

modifications to the classic Hill function to incorporate drug exposure times (133,134). To resolve 

the temporal dynamics of the cellular response to therapy, Lobo and Balthazar proposed a transit 

compartment model to describe the relationship between drug application and the time lag until 

drug effects were realized (135). These models were all built utilizing end-point assays evaluating 

the percent survival following various exposure times. Lankelma employed a host of clonogenic 

assays following treatment with various concentrations of doxorubicin for multiple exposure 

times (136,137). They quantified cell population size over time and constructed a model relating 

treatment parameters to these cell population dynamics. However, a model of therapy response 

that incorporates both the dynamics of therapy (pharmacokinetics) as well as the dynamics of 

cellular response (pharmacodynamics) has remained elusive. Such modeling would represent a 

critical advance, as it would allow more precise measurements of response and customization of 

treatment protocols following estimation of PK parameters. 

 This work focuses on the construction of a mathematical model to predict TNBC cell 

population dynamics in response to time-varying doxorubicin treatments. The approach outlined 

below incorporates a series of experiments in a panel of four TNBC cell lines designed to measure 

both the in vitro pharmacokinetics (PK) and pharmacodynamics (PD) of doxorubicin therapy. The 

PK/PD parameters are quantified through time-resolved fluorescent microscopy, and these data 

are used to drive the development of a treatment response model. This approach yields a 
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mathematical model of doxorubicin therapy with distinct parameter value sets for each TNBC cell 

line. This model can generate hypotheses that are directly testable in both the in vitro and in vivo 

settings. Thus, the objectives of this contribution are to: 1) establish a model that describes in vitro 

doxorubicin pharmacokinetics, 2) establish a model relating treatment variables (concentration and 

duration) to subsequent cell population dynamics, and 3) propose a prediction scheme leveraging 

doxorubicin pharmacokinetic and pharmacodynamic data to predict response to various 

doxorubicin treatments (Figure 2.1). 

 

2.4 Materials and Methods 

2.4.1 Cell culture 

TNBC is a subgroup of invasive cancers that lack significant expression of the estrogen 

receptor, progesterone receptor, and human epidermal growth factor receptor 2 (138). Lacking 

specific receptor targets, the current approach to adjuvant and neoadjuvant therapy (NAT) for 

locally advanced TNBC utilizes a combination of cytotoxic drugs with a particular emphasis on 

doxorubicin, cyclophosphamide, and docetaxel (126–128). Lehmann and colleagues identified six 

subtypes of TNBC: two basal-like subtypes, an immunomodulatory subtype, a mesenchymal 

subtype, a mesenchymal stem cell-like subtype, and a luminal subtype expressing androgen 

receptor (96,139). One cell line from four of these groups was selected for the current studies: 

MDA-MB-468 (basal-like 1), SUM-149PT (basal-like 2), MDA-MB-231 (mesenchymal), and 

MDA-MB-453 (luminal expressing androgen receptor). In selecting cell lines in this way, the 

proposed model of doxorubicin response can be assessed across a heterogeneous spectrum of 

TNBC cell lines. 

All cell lines were obtained through American Type Culture Collection (ATCC, 

http://www.atcc.org) and maintained in culture according to ATCC recommendations. All cell 

lines were tested for mycoplasma after thawing using a PCR-based method (MycoAlert, Lonza, 

Allendale, NJ), and any positive cultures were immediately discarded. To facilitate automated 

image analysis for identifying and quantifying individual nuclei in the time-lapsed fluorescent 

microscopy experiments (described below), each of the four cell lines was modified to express a 

histone H2B conjugated to monomeric red fluorescent protein (H2BmRFP; Addgene Plasmid 

18982) as previously described (130,140,141). Briefly, this plasmid was transduced into each cell 

line with replication-incompetent lentiviral particles. Following transduction, each cell line was  
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Figure 2.1: Overview of cell-line specific modeling framework for doxorubicin treatment 
response prediction. A series of time-resolved fluorescence microscopy experiments were 
performed to quantify both the uptake of doxorubicin into TNBC cell lines (a) as well as the 
response of those cell lines to various doxorubicin treatments (b). Data from these experiments 
were used to fit the model (i.e., Eqs. (2.1) - (2.5)) of treatment response in TNBC (c). After training 
the model on observed data, the model can be initialized with a cell count and a prescribed 
treatment timecourse to predict cell population dynamics following the proposed treatment (d). 
These predictions can then be compared to experimental results. 
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sorted via flow cytometry by label intensity to collect the brightest 20% of the respective cell 

populations. Modified cells were grown in the same manner as their respective parental strains. 

Cell lines were passaged no more than 30 times before being discarded.  

 

2.4.2 Doxorubicin Imaging and Image processing 

Time resolved fluorescent microscopy was employed to characterize the uptake of 

doxorubicin by each cell line. Doxorubicin is naturally fluorescent with excitation and emission 

peaks near 470 nm and 570 nm, respectively (142). The intrinsic fluorescence of doxorubicin was 

leveraged to quantify the movement of doxorubicin from the extracellular space into cells. Each 

parental cell line was introduced into 96-well microtiter plates at ~10,000 cells per well. Each well 

was imaged at ~15 minute intervals via brightfield and fluorescent microscopy with a 20× 

objective in 2×2 image montages on a BD Pathway 855 Bioimager (BD Biosciences, 

San Jose, CA). Imaging began one hour prior to application of doxorubicin and continued for 

approximately 24 hours following doxorubicin application. An 8-fold range of doxorubicin 

concentrations, from 2500 nM to 312 nM, were applied to cells using a two-fold dilution series. 

After 6 or 12 hours, drug was removed via media replacement. Each of the ten conditions (i.e., 

four concentrations plus a control each at two exposure times) were collected in duplicate. These 

treatment conditions were designed to approximate drug exposure of human tumors in vivo as 

measured by the area under the doxorubicin concentration-time curve (a range of 1875 to 

30000 nM∙hr was used experimentally to approximate the 4427±418 nM∙hr observed in vivo (143)) 

and peak doxorubicin concentration (312 to 2500 nM experimentally to approximate the 1000 to 

5000 nM observed in vivo (143)). 

Digital images were segmented into extracellular and intracellular compartments through 

a hybrid, semi-automated process. Prior to doxorubicin application, segmentation was performed 

exclusively on the brightfield images to identify cell boundaries. For each cell line, a single cell 

image was manually cropped, and the normalized cross-correlation was calculated between that 

cell and the entire image. Local maxima of the cross correlation were used to identify cells. The 

images were then manually reviewed to remove any false positives and to ensure all cells were 

identified. The initial cell segmentation mask, which consisted of circles centered on each cell 

identified via cross-correlation, were refined through an active contour model (Figure 2.2b). 



 29 

Following application of doxorubicin, segmentation was performed on the fluorescent images with 

a threshold-based approach. Briefly, the background was subtracted by taking the difference 

between the image and a cell-free well with the same doxorubicin concentration. An adaptive 

histogram approach was used to enhance the contrast of this difference image, and the image was 

finally de-noised with a Wiener filter. The threshold was automatically selected for each image 

with Otsu’s method, and this threshold was applied to generate the segmentation mask. The mask 

was refined using an active contour model (Figure 2.2c). Finally, the mask was overlaid on 

brightfield images, and the segmentation result was manually reviewed. 

 

2.4.3 Doxorubicin Compartment Modeling 

A three compartment model was employed to describe the uptake and binding of 

doxorubicin in cancer cells. Briefly, doxorubicin is thought to enter cells via diffusion, possibly 

through a saturable carrier-mediated process (144,145). Once in the cell, doxorubicin is 

translocated to the nucleus where it intercalates DNA and stabilizes the topoisomerase II 

complex (146,147). Doxorubicin may also be actively effluxed from the cell via p-

glycoprotein (148). This process is modeled via mass conservation in Eqs. (2.1) - (2.3):  
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where CE (t), CF (t), and CB (t) are the concentrations of doxorubicin in the extracellular, free, and 

bound compartments, respectively, at time t. Both the free and bound compartments were defined 

to share the same physical space (intracellular). The free compartment represents drug that has 

diffused into the cell, while the bound compartment represents drug that has bound to the DNA. 

The kij parameters are rate constants that describe the movement of doxorubicin between each of 

these compartments; for example, kFE describes the rate of drug transfer from the free, intracellular 

compartment to the extracellular compartment. Similar definitions apply to kEF and kFB. The 

volumes of the intracellular and extracellular compartments are denoted with vI and vE, 

respectively. The model is illustrated in Figure 2.2a. Of note, each cell line is assumed to have a 
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single set of compartment model parameters (i.e., kEF, kFE, and kFB), and those parameters are 

assumed to be independent of drug concentration and drug exposure time. Further, to simplify the 

model, saturation kinetics for doxorubicin transport are not explicitly included. 

The extracellular and intracellular compartments were defined from the cell segmentation. 

To create fluorescent intensity timecourses for the intracellular and extracellular compartments, 

fluorescence signal was averaged within the respective (segmented) compartments on each image. 

These two intensity timecourses (extracellular and intracellular) were converted to concentration, 

as doxorubicin concentration is proportional to observed fluorescence intensity (Figure 2.2d). The 

volume of the extracellular compartment, vE, was set to 250 µL, the volume of media in each well. 

The intracellular volume, vI, was estimated by multiplying the number of cells seeded (10,000) by 

an estimate of cell volume (an ellipsoid model was fit to cell segmentation results). 

A nonlinear least squares approach implemented in MATLAB (Natick, MA) was used to 

fit Eqs. (2.1) - (2.3) to the concentration timecourses for each treatment condition to generate 

estimates for kEF, kFE, and kFB. Note that the extracellular compartment was treated as a well-

defined, experimentally-controlled input function and was not fit by the model. For example, to 

generate the extracellular compartment timecourse illustrated in Figure 2.2e, a bolus of 

doxorubicin was added to the experimental well t = 0 hours. At t = 6 hours, the drug was removed 

via media replacement; i.e., all drug-containing media is removed from the well, and fresh, drug-

free media was added. This input function was used to perturb the system to measure the 

underlying cell line-specific compartment model parameters. As model parameters were assumed 

to be invariant of doxorubicin concentration and exposure time, all treatment conditions were fit 

simultaneously to yield a single estimate of kEF, kFE, and kFB for each cell line. The area under the 

doxorubicin curve in the extracellular compartment (AUCc,t) was introduced to the objective 

function, G(x), to normalize for treatment conditions as follows:  
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where x is the set of parameters, Yt,c is the measured concentration at time t and concentration c, 

( ),t̂ cY x  is the model-estimated concentration at time t and concentration c when the model is 

evaluated with parameters x, ci and cf are the minimum and maximum drug concentrations 

respectively, and ti and tf are the initial and final timepoints, respectively. Without AUC  
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Figure 2.2: Overview of doxorubicin compartment modeling. Doxorubicin pharmacokinetics is 
described with a three compartment model, illustrated in (a) and described by Eqs. (2.1) - (2.3). 
To parameterize this model, each cell line is serially imaged via brightfield (b) and fluorescent 
microscopy (c) to monitor doxorubicin concentration over time. Images are separated into 
extracellular and intracellular (red overlay) compartments. As fluorescence intensity is 
proportional to doxorubicin concentration (d), the image intensities are converted into 
concentration, and extracellular and intracellular concentration timecourses are extracted from 
these images (e). Finally, the model is fit to these timecourses (e), and the model fit with 95% 
confidence interval are overlaid on the data. Experimentally-derived model parameter values with 
95% CIs are reported for each TNBC cell line investigated (f-h). 
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normalization, the residuals at high concentrations and exposure times would drive model fits at 

the expense of lower concentrations and exposure times. The compartment modeling approach is 

outlined in Figure 2.2. 

Of note, three compartment models of varying complexity were initially proposed to 

describe doxorubicin pharmacokinetics. Model selection was performed using the Akaike 

information criterion, which is a measure of model likelihood that balances goodness of fit with 

the number of free parameters (149).  

 

2.4.4 Treatment Response Monitoring 

Each H2B-labeled TNBC cell line was added to 96-well microtiter plates at ~2,500 cells 

per well. Cells were grown for at least three days to allow for a pre-treatment proliferation rate to 

be estimated. Doxorubicin was then introduced at concentrations ranging from 2500 to 10 nM with 

a two-fold dilution series and subsequently removed via media replacement after 6, 12, or 24 hours 

(areas under doxorubicin concentration-time curve ranging from 60 to 60000 nM∙hr). These 

experimental conditions were designed such that the areas under the doxorubicin curves 

overlapped those observed in vivo (143). These cells were imaged daily via fluorescent microscopy 

for at least 30 days following application of doxorubicin. For these treatment response studies, 

fluorescence microscopy images were collected using a Synentec Cellavista High End platform 

(SynenTec Bio Services, Münster, Germany) with a 20× objective and tiling of 21 images. 

Exposure times with 570 nm light were optimized for each cell line to account for varying label 

strength and ranged from 600-650 ms. Nuclei were segmented and counted in ImageJ 

(http://imagej.nih.gov/ij/) using a previously-described method (150) to quantify cell population. 

Six replicates of each of the 30 treatment conditions (nine concentrations plus a control for each 

drug exposure time) were collected for each cell line. Media was refreshed every 3 days for the 

duration of each experiment to ensure sufficient growth conditions for surviving cells. 

 

2.4.5 Treatment Response Model 

Doxorubicin canonically induces DNA damage by intercalating DNA bases, stabilizing the 

topoisomerase II complex, and inducing DNA damage via free radical formation (147). At high 

doses (here, dose is defined as a summary statistic of a treatment condition, consolidating drug 

concentration and drug exposure time, and is denoted D), extensive DNA damage often results in 
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cell death via apoptosis. Low to moderate doses of doxorubicin induce cell senescence, and cell 

death occurs primarily via mitotic catastrophe (151,152). Whereas apoptosis is immediate (on the 

order of hours to days), mitotic catastrophe is a relatively protracted process (on the order of 

several days). This is likely due to the fact that cells must progress through the cell cycle to reach 

mitosis for this mode of death to occur, and doxorubicin is known to cause cell cycle arrest. These 

processes were modeled by a logistic growth model, Eq. (2.4), modified by either one of two time-

dependent response functions, Eqs. (2.5) and (2.6), reflecting the distinct forms of cell death, as 

follows: 
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where kp and kd are the proliferation and dose-specific death rates, respectively, r is a dose-specific 

constant describing the rate at which treatment induces an effect, θ is the dose-specific carrying 

capacity describing the maximum number of cells that can be supported by the experimental 

system, and NTC (t) is the number of tumor cells at time t. Prior to treatment (i.e., t < 0), cells are 

modeled to have a constant proliferation rate, kp. Following treatment at t = 0, Eq. (2.5), assumed 

an immediate transition from the pre-treatment growth rate to a stable, post-treatment rate. 

Eq. (2.6), allowed for a smooth induction of drug effect following treatment, while ultimately 

allowing for recovery of the cell population. A weighted averaging approach, detailed below, was 

used to incorporate both Eqs. (2.5) and (2.6) in the treatment response model. Cell populations are 

assumed to be homogeneous in that the average behavior of the population is used to describe 

population dynamics. Of note, an analytic solution of Eqs. (2.4) – (2.5) was derived to improve 

computational speed. 

For each cell line, Eq. (2.4) was first fit to pre-treatment and untreated control data, yielding 

a single, cell-line specific estimate for the proliferation rate, kp, and carrying capacity, θ. Fixing kp 

for each cell line, the treatment response models, Eqs. (2.5) and (2.6), were then fit to the post-

treatment data. For each cell line, all data from a single doxorubicin exposure time experiment 
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were considered simultaneously in the parameter optimization. Separate parameter estimates were 

made for each doxorubicin concentration in each exposure time dataset. Specifically, parameter 

estimates and the corresponding 95% confidence intervals were obtained for kd,A and θ in Eq. (2.5), 

and kd,B, r, and θ in Eq. (2.6) from the post-treatment cell counts. To perform this estimation, a 

nonlinear least squares approach was implemented in MATLAB, utilizing the trust-region 

reflective algorithm. Notably, in fitting each model, a regularization term was introduced to the 

objective function, G(x), to penalize non-smooth variation in parameter values with respect to 

treatment conditions as follows: 
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where x is the set of parameters, Yt,c is the measured cell counts at time t and concentration c, 

( ),t̂ cY x  is the model-estimated cell counts at time t and concentration c when the model is 

evaluated with parameters x, ci and cf are the minimum and maximum drug concentrations 

respectively, ti and tf are the initial and final timepoints respectively, and α is an empirically-

determined positive constant that weights the contribution of the regularization term, Dc (x), which 

is a first derivative operator that estimates the local derivative of the parameters with respect to 

treatment condition (as described below). The regularization term provides structure to parameter 

estimates that are otherwise unable to be resolved with the treatment response data. In turn, the 

regularization term improves performance of the local regression approach used for predictions in 

Section 2.4.6, which is sensitive to local variance in parameter estimates. 

The model was initialized with the cell count at the timepoint following treatment for each 

individual replicate, and all subsequent timepoints were considered in the model fit. To avoid local 

minima, the fitting process was initialized with 50 sets of parameter estimates selected randomly 

from expected distributions for each parameter. kd values were initialized by sampling a uniform 

distribution from [-2kp, 5kp]. r was bounded within [0.001, 0.05] hr-1. These bounds correspond to 

observing the maximal death rate at 1000 and 20 hours respectively, reflecting the duration of the 

experiment (~700 hours) and the sampling rate (24 hours). The experiments, as constructed, are 

unable to resolve estimates beyond these boundaries. Further, θ was bounded between [0.7θ, 1.3θ], 

where θ is the carrying capacity observed in the control data for each cell line. Notably, θ cannot 
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be resolved at high doses that induced population regression. In these cases, in which population 

size is much lower than θ, the logistic growth term has little influence on model behavior. 

A cross-validation approach was used to tune the regularization parameter α. For each cell 

line, the other three cell lines were used as a training set to determine α for the held-out cell line. 

Each model (i.e., Eqs. (2.5) – (2.6)) was fit to each cell line in the training set using α values 

uniformly sampled from 0 to 10. The prediction scheme outlined in Section 2.4.6 was then run for 

each cell line. The α value yielding the best predictions as measured by mean percent error across 

the cell lines in the training set, were used in fitting the held-out cell line. 

The maximum bound concentration of doxorubicin (CB,max) and the area under the curve of 

the extracellular concentration timecourse (AUC) were both used to summarize each treatment 

condition (D in Eqs. (2.4) - (2.5)) (147). We hypothesized that the CB,max metric would sufficiently 

describe both the topoisomerase-II mechanism of doxorubicin as well as doxorubicin’s free-radical 

mechanism, due to redox cycling of doxorubicin that persists within cells (153). To calculate 

CB,max, the compartment model (i.e., Eqs. (2.1) - (2.3)) was populated by cell-line-specific 

parameters and run forward in time using the specified extracellular concentration timecourse for 

each treatment condition. CB,max was defined to be the maximal concentration in the bound 

compartment during the model evaluation. As doxorubicin is hypothesized to also have an 

extracellular effect (134,154), the AUC was also used as a descriptor of treatment condition. AUC 

was defined as the integral of the extracellular concentration timecourse with respect to time 

(simply (doxorubicin concentration) × (exposure time) in the pulsed treatments used in this study). 

To generate a single best-fit model, a weighted averaging approach was employed. Model weights 

were calculated from the Akaike information criterion (AIC) for each kd (t) model (i.e., Eqs. (2.5) 

and (2.6)) (149). The AIC for model i can be calculated with the following equation: 

 ln 2i
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n
= +  , 

where n is the number of data samples, RSS is the residual sum of squares of the fit-optimized 

model, and p is the number of model parameters. The normalized probability of model i being the 

best model, wi, among all proposed models can then be calculated: 
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where i∆  is the difference in AIC values between model i and the model with the minimal AIC 

value and R is the total number of models(155,156). The best-fit model, NTC (t), can then be 

calculated by weighting Eqs. (2.4) - (2.5) as follows: 

 ( ) ( ) ( ), ,TC A TC A B TC BN t w N t w N t= +  , 

where NTC,A (t) and NTC,B (t) are the solutions to Eq. (2.4) populated with Eqs. (2.5) and (2.6) 

respectively, and wA and wB are the respective weights for those models. 

Confidence intervals on the best-fit timecourses were constructed through a bootstrap 

approach. The six replicates for each treatment condition were resampled with replacement, and 

the fitting process described above was used to generate timecourses for each resampled dataset. 

This resampling was repeated 500 times, and the 95% confidence intervals on these fits were 

recorded. 

This fitting approach was validated on a synthetic dataset to ensure that parameter 

estimation routines successfully returned true model values. The dataset was constructed through 

forward evaluations of the proposed models with five levels of additive noise drawn from a normal 

distribution with a standard deviations of 0%, 5%, 10%, 15%, and 20% of the simulated cell count. 

Notably, the cell counting technique employed in this work has been shown to be highly accurate; 

when compared to manual counting, the automated counts are highly correlated (R2 = 0.99) (150). 

22,500 simulations were run under each noise condition, and the model was fit to each simulated 

dataset.  

To determine the effect of parameter variance on model behavior, the sensitivity of model 

predictions at the end of the experiment to each parameter was measured using the extended 

Fourier Amplitude Sensitivity Test (157). The total-order sensitivity index, STI, is reported. This 

metric is scaled from 0 to 1 and represents the fraction of model output variance that can be 

apportioned to variance in the parameter under investigation. 

 

2.4.6 Prediction of Treatment Response 

The proposed model, as constructed, can accommodate a range of treatment times and 

concentrations. While this model is intended as a more general predictive framework, to 

demonstrate the utility of the modeling approach, the ability of the model to predict population 

changes following treatment at new concentrations and exposure times was evaluated. In this   
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Figure 2.3: Prediction approach. Model parameters (kd,A, θ in Eq. (2.5) and kd,B, r, θ in Eq. (2.6)) 
were fit to each treatment condition in the training set (a, red X’s). These parameter fits were then 
described by a local regression model (a, black line) to generate parameter estimates for treatments 
in the test set (a, blue O’s). Model weights from the training set (b, red x’s) were described by a 
logistic model (b, black line) to generated weights for the test set (b, blue circles). Final predictions 
represent a weighted average of each model, and a bootstrap analysis was used to generate a 95% 
confidence interval for these predictions (red overlay in c). 
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example, data from a single exposure time (12 hours; i.e., the ‘training set’) is used to train the 

model (i.e., Eqs. (2.4) – (2.5)) to predict cell counts following treatments for 6 and 24 hours (i.e., 

the ‘test set’). This analysis was repeated using each exposure time dataset as a training set (e.g., 

6-hour dataset used to predict cell counts following 12- and 24-hour treatments). 

Model parameters and weights first were fit to the treatment response data in the training 

set as described in Section 2.4.5. Next, each treatment condition in the test set was described by 

its CB,max and AUC values. As these values in the test set may not overlap exactly with those values 

in the training data, localized linear regression models were used to interpolate parameter space to 

generate parameter estimates at the specified CB,max and AUC values (158). This approach fits a 

linear model to training data near the CB,max and AUC of interest. Model weights (i.e., wA and wB) 

for the test set then were estimated through a binomial logistic model. This logistic function was 

trained to define the relationship between estimated model weights in the training set and the 

corresponding CB,max, AUC, and model parameter values. Finally, models were initialized with the 

first post-treatment measurements in the test set and run forward using the estimated parameter 

values to produce cell count predictions. This approach is outlined in Figure 2.3. 

 The mean percent error across all timepoints and mean percent error at the end of the 

experiment are reported for the predicted models and corresponding best fit models. Confidence 

intervals on the predicted timecourses were constructed through a bootstrap analysis in which the 

six replicates for each treatment condition in the training set were resampled with replacement. 

This resampled training set was used to generate predictions. The resampling procedure was 

repeated 500 times, and the 95% confidence intervals on these predictions were computed.   

 

2.5 Results 

2.5.1 Doxorubicin uptake 

The three models initially proposed to describe doxorubicin PK are illustrated in 

Figure 2.4. The model used in this work (Figure 2.4b, Eqs. (2.1) – (2.3)) was selected because, 

relative to the other models, it best balanced model parameter parsimony with goodness of fit as 

measured by the AIC (i.e., it was found to have the smallest AIC value among evaluated models). 

A three compartment model was sufficient to describe doxorubicin uptake in all cell lines. 

The mean percent errors of the model fit across all treatment conditions were 31.8%, 34.6%, 

23.5%, and 26.8% for the SUM-149PT, MDA-MB-231, MDA-MB-453, and MDA-MB-468 cell 
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Figure 2.4: Compartment model selection. Each of the models (a-c) were fit to the concentration 
timecourses as described in Section 2.4.3. The Akaike information criterion (AIC) was calculated 
for each of the models. The AIC is a measure of model likelihood that balances goodness of fit 
with the number of free parameters. Smaller AIC values indicate a more likely model. Model b is 
more likely than Model a for all cell lines (d). Model c results in a marginal improvement on Model 
b in two of the cell lines. Model b was selected to describe doxorubicin pharmacokinetics. 
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Figure 2.5: Residuals from compartment model fit. The doxorubicin concentration timecourses 
are fit to Eqs. (2.1) – (2.3) as described Section 2.4.3. Residuals, normalized by the area under the 
doxorubicin curve in the extracellular compartment (AUC), are shown below. Each column 
corresponds to an individual cell line and each row to a given drug concentration. The red and 
black points represent residuals from the 6-hour and 12-hour exposure time datasets, respectively. 
While no significant violations of model assumptions are seen, it is difficult to rigorously test the 
assumption that parameters are independent of concentration and exposure time in the current 
dataset, which only contains four doxorubicin concentrations and two exposure times. Notably, 
higher errors are observed at low doxorubicin concentrations and low exposure times. In these 
cases, the low concentrations of doxorubicin in the intracellular compartment result in a low signal 
to noise ratio of the measurements. 
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lines, respectively. Model residuals are shown in Figure 2.5. A sample doxorubicin uptake curve 

is displayed in Figure 2.2e along with compartment model parameter fits for each cell line with 

95% confidence intervals. Significant differences were observed when comparing parameter fits 

from different cell lines. For example, kEF is significantly greater in the MDA-MB-231 line than 

in the MDA-MB-468 line, indicating that doxorubicin diffuses more quickly into MDA-MB-231 

cells (p < 0.05). 

 

2.5.2 Validation of Optimization Routine 

The optimization routine described in Section 2.4.5 was used to recover parameter 

estimates from simulated data. As illustrated in Figures 2.6 and 2.7, the optimization routine was 

able to return accurate estimates of kd,A, kd,B, and r. Of note, high variance in parameter estimates 

was observed as values of r approached 0.05 hr-1 and values of kd,B approached 0 hr-1. There exists 

intrinsic uncertainty at this limit as those rapid dynamics coupled with small kd,B effects cannot be 

resolved by the current data.  

 

2.5.3 Sensitivity Analysis 

The eFAST was implemented to study the effect of model parameters on model 

predictions. The sensitivity of model predictions to parameter variations was evaluated at 1, 2, and 

4 weeks post-treatment and quantified by STI. STI is reported in Figure 2.8. The proliferation rate, 

kp, is the most sensitive parameter over the early timepoints. Additionally, model behavior is 

insensitive to θ at early timepoints and high kd,B values as the cells counts in these conditions are 

much lower than the carrying capacity, limiting the effect of the logistic growth term in Eq. (2.4). 

Additionally, model behavior is insensitive to r for low values of kd,B. Accordingly, the high 

variance in parameter estimates in this range noted in 2.5.2 does not affect model predictions. 

 

2.5.4 Doxorubicin Treatment Response 

Experimentally, all cell lines demonstrated a graded concentration-dependent and time-

dependent response to doxorubicin treatment. Prior to treatment with doxorubicin at t = 0, each 

cell line displayed exponential growth. The proliferation rate (kp) of the SUM-149PT, 

MDA-MB-231, MDA-MB-453, and MDA-MB-468 cell lines were 2.69×10-2 hr-1, 2.23×10-2 hr-1, 

1.64×10-2 hr-1, and 1.18×10-2 hr-1, respectively. In untreated controls, each cell line demonstrated 
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Figure 2.6: Eq. (2.4) was populated with Eq. (2.5) and simulated with five levels of additive noise 
(0, 5, 10, 15, 20%). Parameters were recovered from those simulations, and the fit parameter value 
(kd,A) is compared to its true value. The average value and 95% confidence interval of parameter 
fits are shown. The fitting procedure can recover parameter values across all simulated conditions. 

 

 
 
Figure 2.7: Eq. (2.4) was populated with Eq. (2.6) and simulated with five levels of additive noise 
(0, 5, 10, 15, 20%). Parameters were recovered from those simulations, and the relative percent 
error of the fit parameters (kd,B and r) are reported. While the fitting procedure can recover 
parameter values across all simulated conditions, consistently high error rates in r estimates were 
observed at low values of kd,B. The uncertainty in r for small kd,B does not affect model predictions 
as demonstrated by the sensitivity analysis in Figure 2.8. 
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Figure 2.8: The sensitivity of model behavior to parameter variation was measured via the 
extended Fourier Amplitude Sensitivity Test (eFAST (157)) and reported with STI, the total-order 
sensitivity index. STI represents the fraction of model output variance that can be apportioned to 
variance in the parameter under investigation and is scaled from 0 (insensitive) to 1 (sensitive). 
The sensitivity of model behavior 7, 14, and 28 days following treatment are reported in (a-c) as a 
function of kd,B. The errorbars represent one standard deviation. A dummy parameter is included 
for reference. This parameter is not in the model and thus the model should be insensitive to its 
variation. Notably, model behavior is insensitive to r for low values of kd,B. Additionally, model 
behavior is insensitive to θ at early timepoints and high kd,B values as the cells counts are much 
lower than the carrying capacity in these conditions, limiting the effect of the logistic growth term. 
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logistic growth with cell-line specific carrying capacities (θ) of 3.81×104, 1.86×104, 2.21×104, and 

1.64×104 for the SUM-149PT, MDA-MB-231, MDA-MB-453, and MDA-MB-468 cell lines 

(Figure 2.9). 

Following treatment, responses varied from continued, positive growth up to immediate 

population regression. This spectrum of responses is illustrated by the SUM-149PT response data 

in Figure 2.10. At low doses (AUC < 480 nM∙hr) doxorubicin has little effect, and cell populations 

continue to grow exponentially up to a carrying capacity (2.10a-2.10c). As concentration and 

exposure time increase, the population growth rate appears to slow (2.10d). Eventually, a nonlinear 

response defined by a protracted slowing of population growth rate with a recovery back to pre-

treatment growth rate is observed (2.10e-2.10h). At high doses (AUC > 25×103 nM∙hr), the cell 

population rapidly declines (kd,A ≥ 2.9×10-2 hr-1), and no population rebound is observed during 

the experiment (2.10i).  

The dose levels that correspond to the effects described above were specific to each cell 

line. In Figure 2.11, cell counts from each cell line following doxorubicin treatment for six hours 

at three concentrations are shown. The SUM-149PT line is relatively insensitive to doxorubicin 

therapies, demonstrating continued growth in all treatment conditions shown in Figure 2.11. 

Comparatively, the MDA-MB-468 line is very sensitive to doxorubicin therapy, demonstrating 

complete population regression at low doxorubicin doses (AUC ≥ 186 nM∙hr). The MDA-MB-231 

and MDA-MB-453 cell lines displayed intermediate sensitivity. Despite the differential 

sensitivities, each of these cell lines followed the same general pattern described above. 

 

2.5.5 Model Fits 

As described in Section 2.4.5, the treatment response model was fit to each treatment 

condition. These model fits and 95% confidence intervals are superimposed on the cell counts in 

Figures 2.10 and 2.11. The α values used to generate the fits in Figures 2.9-2.14 were (α for 

Eq. (2.5), α for Eq. (2.6)): (10,1) for SUM-149PT, (6,1) for MDA-MB-231, (6,2) for 

MDA-MB-453, and (4,3) for MDA-MB-468. The mean percent error across all timepoints and 

mean percent error at the end of experiment (EoE) for the best-fit model to the SUM-149PT cell 

line after 6 and 24 hours of doxorubicin treatment are reported in Table 2.1. As shown in Table 

2.1, the model was able to accurately capture a wide range of treatment conditions very accurately   
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Figure 2.9: Control data from dose-response experiments in a panel of TNBC cell lines. Each cell 
line was plated and serially imaged via fluorescence microscopy for 30 days. Nuclear counts from 
these images are displayed below in black with error bars representing the 95% CI from the six 
experimental replicates. Each column corresponds to an individual cell line. Data are truncated 
when cell populations reached carrying capacity. These counts are fit to Eq. (2.4) with kd = 0 as 
described Section 2.4.5. Model fits with 95% CI are superimposed on the cell counts. Each cell 
line demonstrates a characteristic growth rate (kp) and carrying capacity (θ). 
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Figure 2.10: Impact of doxorubicin concentration and exposure time on response of SUM-149PT 
cells. The SUM-149PT cell line was plated and serially imaged via fluorescence microscopy for 
30 days following time-resolved doxorubicin treatments. Nuclear counts from these images are 
displayed below in black with error bars representing the 95% CI from the six experimental 
replicates. These counts are fit to Eqs. (2.4) - (2.5) as described Section 2.4.5. Model fits with 95% 
CI are superimposed on the cell counts. The SUM-149PT cell line demonstrated a graded dose-
dependent and time-dependent response to doxorubicin treatment. At low concentrations, no 
appreciable treatment effect is noted regardless of exposure time (a-c). At higher concentrations 
and exposure times, the population growth rate slows (d-e), eventually demonstrating a prolonged 
response to therapy with subsequent regrowth of the population (f-h). At very high concentrations 
and exposure times, no population regrowth is observed (i). 
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Figure 2.11: Dose-response curves in a panel of TNBC cell lines. Each cell line was plated and 
serially imaged via fluorescence microscopy for 30 days following a 6-hour doxorubicin treatment. 
Nuclear counts from these images are displayed below in black with error bars representing the 
95% CI from the six experimental replicates. Each column corresponds to an individual cell line, 
and each row corresponds to a doxorubicin concentration. These counts are fit to Eqs. (2.4) - (2.5) 
as described Section 2.4.5. Model fits with 95% CI are superimposed on the cell counts. While 
there is significant variability in cell line sensitivity to doxorubicin treatment, the dynamics of each 
cell line follows a similar pattern: following treatment the population growth rate slows as a 
function of treatment, and depending on the concentration duration and concentration, a rebound 
in population growth rate is observed. 
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Table 2.1: Model fit statistics for SUM-149PT cell line following 6 and 24 hours of treatment with 
doxorubicin.  
 
  SUM-149PT 
 6 hour Doxorubicin Treatment 24 hour Doxorubicin Treatment 
 Average % Error Mean % Difference EoE Average % Error Mean % Difference EoE 
Concentration (nM) Best-fit Predicted Best-fit Predicted Best-fit Predicted Best-fit Predicted 

10 5.3 5.5 3.8 4.7 6.4 7.1 5.7 5.7 
20 5.3 5.6 3.0 3.6 5.6 9.5 4.3 7.0 
39 6.1 6.6 4.6 6.3 5.5 10.2 4.9 8.1 
78 6.1 7.1 5.0 6.6 10.3 10.5 8.7 9.1 

156 4.6 5.3 4.5 4.0 22.7 22.5 12.0 9.9 
312 9.4 13.6 6.8 5.9 31.4 32.5 25.2 26.9 
625 15.0 16.9 13.1 11.9 50.8 53.6 120.3 150.9 

1250 34.0 37.3 34.3 34.2 30.2 40.6 23.1 101.0 
2500 24.4 42.5 61.1 159.9 40.0 59.0 32.0 117.3 

Average Errors 12.2 15.6 15.1 26.3 22.5 27.3 26.2 48.4 
 
 
 
 
Table 2.2: Table of model statistics for SUM-149PT, MDA-MB-231, MDA-MB-453, and MDA-
MB-468 cell lines following 12 hour doxorubicin treatment. 
 
 Average % Error of Best-Fit Model (12 hour dataset) 

Concentration (nM) SUM-149PT MDA-MB-231 MDA-MB-453 MDA-MB-468 
10 7.1 10.3 7.7 7.6 
20 7.2 8.3 10.2 6.9 
39 5.9 12.1 9.0 11.1 
78 5.5 19.1 15.0 21.6 

156 10.3 19.4 20.2 35.9 
312 19.0 33.1 22.6 32.4 
625 31.4 36.9 26.2 34.2 

1250 46.6 41.8 30.0 30.2 
2500 47.6 32.3 48.9 30.1 
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with mean percent errors of ≤15% for concentrations less than 625 nM after 6 hours of treatment. 

At higher concentrations, the model appears to perform poorly with mean errors >25%. However, 

in these cases, the small number of cells results in noisier measurements at all timepoints. 

Corresponding statistics for MDA-MB-231, MDA-MB-468, and MDA-MB-453 cell lines can be 

found in Table 2.2.  

Model parameter values changed with respect to treatment conditions within a given cell 

line. In Figure 2.12, the parameter values with corresponding 95% confidence intervals extracted 

from experiments with the SUM-149PT cell line are reported. Note that the parameter values 

extracted across all exposure-time experiments for all investigated cell lines appear to collapse to 

a single curve for each parameter when plotted as a function of CB,max. Similarly, the carrying 

capacity (θ) appears to change slightly as a function of treatment condition (Figure 2.13). However, 

θ was unable to be estimated for high doxorubicin doses that induce population regression. Further, 

different models are selected over the range of treatments. Eq. (2.6) is favored at lower CB,max 

values (wB ≈ 1) for the SUM-149PT cell line, while Eq. (2.5) is selected at higher values (wB ≈ 0) 

(Figure 2.14). Of note, the model is relatively insensitive to values of r at low CB,max with STI ≤ 0.3 

(meaning that other parameters account for 70% of model variation in this range). 

 

2.5.6 Model Predictions 

 The prediction scheme in Section 2.4.6 was trained on the 12-hour exposure time dataset 

in the SUM-149PT cell line to generate predictions of population dynamics following 6- and 24-

hour doxorubicin treatments. A set of model predictions is shown in Figure 2.15 overlaid on 

experimental data, and predictions appear to qualitatively match experimental data. Table 2.1 

reports the mean percent error across all timepoints and mean percent error at the EoE of the 

predictions for the SUM-149PT cell line at each concentration. As shown in Table 2.1, the error 

rates of the predicted model compare favorably to those of the best fit model, with the average 

percent error differing by 3.4% between the groups, on average. Further, the predictive model 

performs very well according to average error at concentrations up to 625 nM with an average 

error of 8.7% across those concentrations. The predictions degrade along with the best-fit model 

at higher concentrations. Similar results were obtained when the prediction scheme was trained 

with the 6-hour and 24-hour datasets (Table 2.3 and 2.4 respectively). The average percent error 

differed by 4.1% between the best fit and predicted models on average in these experiments. 
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Figure 2.12: Parameter fits from Eq. (2.5) in a panel of TNBC cell lines as a function of CB,max. 
The parameters in Eq. (2.5) are fit to each treatment condition as described in Section 2.4.5 and 
plotted with 95% confidence intervals against the cell-line specific simulated CB,max from Eqs. (2.1) 
– (2.3). The blue X’s, red O’s, and green Δ’s represent the parameter fits extracted from the 6, 12, 
and 24 hour exposure time datasets respectively. Model parameters estimated from each exposure 
time appear to collapse on each other, when described by CB,max – a summary statistic of each 
treatment condition. This indicates that the compartment model is effective at describing the 
treatments. Further, given that each cell line appears to follow a single trajectory for each 
parameter, this model can be used to predict cell population response to any predefined input 
function. The gray areas for parameter r represent treatment ranges where the total-order 
sensitivity index (STI), which describes the effect of parameter variation on model prediction 
variation, is ≤0.3. Thus the large variance in parameter estimates here has a limited impact on 
model predictions. 
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Figure 2.13: θ fits in a panel of TNBC cell lines as a function of CB,max. θ’s under Eqs. (2.5) – (2.6) 
are fit to each treatment condition as described in Section 2.4.5 and plotted with 95% confidence 
intervals against the cell-line specific simulated CB,max from Eqs. (2.1) – (2.3). The blue X’s, red 
O’s, and green Δ’s represent the parameter fits extracted from the 6, 12, and 24 hour exposure 
time datasets respectively. Model parameters estimated from each exposure time appear to collapse 
on each other, when described by CB,max – a summary statistic of each treatment condition. Notably, 
the carrying capacity appears to vary slightly as a function of treatment condition. Additionally, 
large error bars are observed for high values of CB,max. Under these treatment conditions, the cell 
population does not approach carrying capacity, and the parameter is unable to be resolved. 
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Figure 2.14: Model weights vary across dose range. Each model (i.e., Eq. (2.5) and (2.6)) was fit 
to each treatment condition in the training set. The AIC was calculated for each model fit, and the 
models were weighted as described in Section 2.4.5. The blue X’s, red O’s, and green Δ’s represent 
the parameter fits extracted from the 6-, 12-, and 24-hour exposure time datasets respectively. Note 
that the model fit transitions from Eq. (2.6) (wB = 1) to Eq. (2.5) (wB = 0) as doxorubicin dose 
increases. 
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2.6 Discussion 

 A modeling approach has been introduced that can be used to summarize the PK/PD 

properties of doxorubicin in TNBC cell lines. Cell-line specific model parameters can be estimated 

from experimental data, revealing phenotypic heterogeneity in PK/PD properties not previously 

quantified. Further, the PD properties were found to vary as a function of CB,max and AUC, 

summary statistics of doxorubicin PK. This allows for accurate prediction of cell population 

behavior for up to one month following prescribed doxorubicin treatments in vitro. 

The pharmacokinetics of doxorubicin binding in a panel of cell lines can be characterized 

by a three compartment model. Similar to findings by Shin et al., there are significant differences 

in doxorubicin pharmacokinetics among TNBC cell lines (144). Interestingly, these parameters are 

only loosely correlated with response. For example, the MDA-MB-231 has a greater uptake of 

doxorubicin (as estimated by CB,max) than the MDA-MB-468 line; however, the MDA-MB-468 

line is more sensitive to doxorubicin therapy. This suggests that each cell line has an intrinsic 

sensitivity to stress by doxorubicin. More generally, this model can be leveraged to isolate and 

normalize for variable uptake dynamics in the context of doxorubicin resistance. This could help 

refine approaches to identify mechanisms of resistance and subsequently develop targeted agents 

to address those mechanisms. 

The model relating treatment variables (concentration and duration) to subsequent cell 

population size dynamics proposed in this work captures behavior across a range of TNBC cell 

lines. While each cell line can be described by a specific set of parameters, there is an underlying 

behavior common to all cell lines that is described by the model: an apparent continuum of 

responses from exponential growth to population regression as doxorubicin concentration and 

exposure time are increased. Further, TNBC response to doxorubicin therapy generally appears to 

be a deterministic process. Over a wide range of treatment conditions, cell populations responded 

consistently, as evidenced by the confidence intervals on the cell count data in Figures 2.10, 2.11, 

and 2.15, the overlapping parameter curves in Figure 2.12, and the accuracy of predictions in 

Table 2.1. Several models in the literature have assumed a direct relationship between treatment 

variables and cellular response – either immediate (159) or following some fixed delay (135,160). 

Consistent with those delay models, the data presented in this work indicate that drug effects occur 

on a slower timescale relative to drug binding. Characterizing and reporting on these dynamic   
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Figure 2.15: Model prediction results in SUM-149PT cell line. As described in Section 2.4.6, 
model parameters (kd,A, θ in Eq. (2.5) and kd,B, r, θ in Eq. (2.6)) were fit to each treatment condition 
in the training set (12-hour exposure dataset). These parameter fits were then described by local 
regression models to generate model parameter estimates for treatments in the test set (6- and 24-
hour exposure datasets). Final predictions represent a weighted average of Eqs. (2.5) and (2.6), 
and a bootstrap analysis was used to generate a 95% confidence interval for these predictions (red 
overlay). A series of predictions in the SUM-149PT cell line following 6- and 24-hour doxorubicin 
treatments at three doxorubicin concentrations are shown. Nuclear counts from these experiments 
are displayed in black with error bars representing the 95% CI from the six experimental replicates. 
Each column corresponds to an exposure time. The response of a TNBC cell line can be predicted 
using experimentally-derived PK and PD parameters. 
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measures would enhance information from traditional potency-based assays. Understanding the 

dynamics of therapeutic administration and treatment response can inform drug treatment 

schedules and will provide guidance to optimize response monitoring. 

Interestingly, there appears to be an upper threshold on doxorubicin treatment above which 

all cells die. As that concentration threshold is approached, increased variance is observed in 

population dynamics, especially at later timepoints. For example, in this range of therapy, one or 

two experimental replicates would regrow while no growth was observed in the other replicates 

(e.g., Figure 2.10h). This contributes partly to the high error rates at high concentrations in 

Table 2.1. In these cases, the heterogeneity of the cell population or stochastic cell fate decisions 

may likely have an increased influence on population dynamics (161). We emphasize that such 

increases in variance are more often observed as this treatment threshold is approached. This 

observation questions the use of maximum tolerated dosing schemes, which operate in this high-

variance range (162,163). Considering the data presented in this work in the context of proposed 

adaptive dosing and metronomic dosing approaches (12,20,123,124), there may exist a framework 

in which drug schedules can be customized for each patient to generate predictable changes in 

tumors. Indeed, the PK/PD modeling framework proposed in this work provides a means to more 

precisely test those alternative therapeutic approaches. Even in the current state of TNBC therapy, 

doxorubicin is often delivered on a predefined schedule for all patients with only doses adjusted 

for patient body-surface area. The demonstrated heterogeneity among TNBC cell lines, both in 

their uptake of doxorubicin and the effect of doxorubicin on those cell behaviors, suggests that 

additional metrics are needed for proper dosing of doxorubicin in TNBC. Tumor-specific PK 

properties may be required to normalize tumor response measurements to delivered doxorubicin 

dose. 

This work is further distinguished through its use of a model averaging approach; i.e., the 

best-fit PD model is a weighted average of two distinct treatment response models (Eqs. (2.5) and 

(2.6)). Fundamentally, different cellular processes dominate over the dose range investigated 

(apoptosis at high doses, mitotic catastrophe at low to intermediate doses) (151,152). These 

disparate behaviors are observed in the data, and the model was constructed to account for these 

behaviors. Notably, Eq. (2.5) is unable to explain the regrowth seen at low doses, and Eq. (2.6) is 

unable to describe permanent population regression seen at high doses. The model averaging 

approach demonstrated here can be used to summarize the behavior of cell populations over the 
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entire range of doses investigated. Further, this approach can be used to gain biological insight into 

the behavior of cell lines. Apoptosis is commonly treated as a switch-like process, which commits 

a cell to death at some biologically-defined threshold (164). Similarly, a switch in model weights 

towards Eq. (2.5) (apoptosis) is observed for each cell line as doxorubicin dose increases (Figure 

2.14). Model averaging approaches can limit the insight gained from modeling as different models 

can be selected over the range of experimental conditions without an apparent pattern. However, 

explicitly incorporating biologically-motivated models into a model averaging framework may 

improve both model accuracy and expand the insight derived from modeling approaches. 

As demonstrated in Figure 2.15 and Table 2.1, the prediction framework proposed in this 

paper performs well across the range of treatments and cell lines investigated. This predictive 

modeling framework is dependent on: 1) the observation that model parameters are functions of 

treatment variables, and 2) these treatment variables can be summarized by CB,max and AUC. 

Despite the relative simplicity of the models proposed in this work and the pharmacokinetic 

features used to predict parameter values, this framework is able to generate relatively accurate 

predictions to all experimental treatments in the SUM-149PT cell line, regardless of the training 

set used. While doxorubicin has been in clinical use for several decades, to our knowledge, 

measurements of its cellular effects have not previously been coupled to intracellular 

concentrations in a predictive framework. More broadly, this framework is readily amendable to 

predict response to other cytotoxic therapies. Although it is nearly certain that other cytotoxic 

therapies will require different parameter sets or, even, mathematical models, the coupled 

experimental-modeling approach presented in this work can be used to generate predictions 

following construction of those drug-specific models.  

While the results of this study are promising, several limitations exist in the current 

approach. With respect to the compartment model proposed to describe doxorubicin 

pharmacokinetics, model parameters may change as a function of treatment concentration and 

duration, as suggested by the distribution of residuals seen in Figure 2.5. Characterization of such 

variation through more extensive experiments may be possible, but doxorubicin exerts an effect 

on the cells over the course of the experiments – inherently changing the values of the compartment 

model. For example, cell size was observed to shrink during doxorubicin exposure. This reduced 

volume would enhance the fluorescent signal measured from intracellular space in these   
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Table 2.3: Model fit statistics for SUM-149PT cell line following 12 and 24 hours of treatment 
with doxorubicin. 
 
  SUM-149PT 
 12 hour Doxorubicin Treatment 24 hour Doxorubicin Treatment 
 Average % Error Mean % Difference EoE Average % Error Mean % Difference EoE 
Concentration (nM) Best-fit Predicted Best-fit Predicted Best-fit Predicted Best-fit Predicted 

10 7.1 7.6 5.8 5.5 6.4 8.1 5.7 6.2 
20 7.2 8.1 5.5 5.7 5.6 12.4 4.3 9.3 
39 5.9 7.0 3.7 4.2 5.5 12.6 4.9 12.1 
78 5.5 7.1 4.6 6.1 10.3 13.3 8.7 13.7 

156 10.3 13.0 9.0 15.1 22.7 23.7 12.0 12.6 
312 19.0 21.0 21.1 21.7 31.4 35.7 25.2 37.4 
625 31.4 33.6 23.0 33.3 50.8 42.7 120.3 89.5 

1250 46.6 40.8 125.0 78.8 30.2 34.3 23.1 66.8 
2500 47.6 47.7 82.2 75.3 40.0 49.6 32.0 74.6 

Average Errors 20.1 20.7 31.1 27.3 22.5 25.8 26.2 35.8 
 
 
 
 
Table 2.4: Model fit statistics for SUM-149PT cell line following 6 and 12 hours of treatment with 
doxorubicin.  
 
  SUM-149PT 
 6 hour Doxorubicin Treatment 12 hour Doxorubicin Treatment 
 Average % Error Mean % Difference EoE Average % Error Mean % Difference EoE 
Concentration (nM) Best-fit Predicted Best-fit Predicted Best-fit Predicted Best-fit Predicted 

10 5.3 7.6 3.8 7.1 7.1 9.9 5.8 8.9 
20 5.3 7.7 3.0 7.2 7.2 7.3 5.5 5.3 
39 6.1 7.2 4.6 5.9 5.9 9.8 3.7 8.7 
78 6.1 13.7 5.0 5.5 5.5 11.5 4.6 6.3 

156 4.6 13.9 4.5 10.3 10.3 10.9 9.0 8.6 
312 9.4 15.9 6.8 19.0 19.0 19.2 21.1 22.7 
625 15.0 18.8 13.1 31.4 31.4 33.1 23.0 22.1 

1250 34.0 41.7 34.3 46.6 46.6 49.0 125.0 112.8 
2500 24.4 46.4 61.1 47.6 47.6 50.7 82.2 62.1 

Average Errors 12.2 19.2 15.1 20.1 20.1 22.4 31.1 28.6 
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experiments. While the compartment model explicitly incorporated the volume of these 

compartments with estimates of cell volume, additional parameters would be needed to account 

for the time-dependent variation in compartment volumes. Indeed, when each treatment condition 

in the compartment modeling experiment was fit independently, the value of kFB appeared to 

increase with concentration and duration of therapy. While no significant violations of model 

assumptions are seen, it is difficult to rigorously test the assumption that parameters are 

independent of concentration and exposure time in the current dataset, which only contains four 

doxorubicin concentrations and two exposure times. Further, heterogeneity in the uptake of 

doxorubicin was observed. Within the field of view of the experiment, variation was noted from 

one cell to the next (Figure 2.2c). As the modeling approach collapsed all cells into a single drug 

uptake timecourse, this heterogeneity was not considered. It would be of interest to track these 

cells over time to determine cell-specific parameters in relation to drug administration (165). 

Further, this model does not explicitly include saturation kinetics for doxorubicin transport, which 

may contribute to the observed error rates. However, incorporating this heterogeneity would 

significantly increase the complexity of the proposed model, requiring additional equations and 

additional experimental data to describe each compartment model rate. Despite these limiting 

assumptions, the CB,max term calculated with the three compartment model allowed for prediction 

of pharmacodynamic properties. 

The treatment response model was inspired by observations of treatment response in these 

cell lines. While the treatment conditions were designed to replicate those observed in vivo, it 

remains unknown how the proposed model would respond to more complex treatment curves; e.g., 

biexponential decay curves observed in vivo (143). Such dynamics should, in theory, be captured 

by the proposed doxorubicin PK model, but work remains to validate that assumption. Application 

of the model to an in vivo system will also require spatial considerations. For example, significant 

heterogeneity in perfusion exists within a tumor, impacting both tumor growth and drug 

delivery (90). The variable and immature vasculature may induce local microenvironmental 

changes (hypoxia, acidic extracellular pH) that alter the response to therapy (6,88). This modeling 

framework may need to be expanded to account for such spatial heterogeneity which can be 

characterized by (for example) quantitative imaging data (19). However, the translation of the 

logistic growth formulation has already been realized in several in vivo 

models (21,73,108,166,167).  
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2.7 Conclusion 

In summary, these time-resolved treatment protocols sought to replicate the clinically 

observed pharmacokinetics of doxorubicin therapy more closely than the constant concentrations 

in previous dose-response assays. The proposed model, initialized with cell-line specific 

parameters, can describe the response to doxorubicin across a range of TNBC cell lines and 

treatment conditions. Further, within each cell line, the behavior collapses into a single path 

through parameter space as a function of treatment conditions. This observation allows for the in 

vitro response of each cell line to doxorubicin treatment to be predicted. Through the development 

of a mathematical model that explicitly considers both doxorubicin pharmacokinetics and 

pharmacodynamics, exploration of a wide range of treatment protocols that would be intractable 

experimentally is now possible. Specifically, this model provides an imminently scalable approach 

to predicting tumor changes in response to doxorubicin pharmacokinetics in vivo. This approach 

should allow for further refinement of biological models of doxorubicin treatment response, 

scalable predictions of tumor response in animal models, and, eventually, personalized, 

computationally-optimized treatment regimens that maximize tumor control with doxorubicin. 
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CHAPTER 3 
 
 

EQUIVALENT DOSE: LEVERAGING MATHEMATICAL MODELING TO 
QUANTIFY PHARMACOKINETIC AND PHARMACODYNAMIC PROPERTIES 

 
 
3.1 Introduction and Contribution of Study 

Conventionally, drug response assays are summarized via sigmoidal functions that 

describe cell survival data at a single timepoint with respect to applied drug concentration. Such 

analysis has a limited biophysical basis. Notably, drug pharmacokinetic and pharmacodynamic 

properties are conflated in describing cell response to therapy, fundamentally limiting the 

biological insight to be gained from the analysis. In this chapter, we build on the experimental-

mathematical modeling approach developed in Chapter 2 and propose a new metric, termed the 

“equivalent dose” as a more precise means for quantifying treatment response assays. Specifically, 

we demonstrate the utility of the proposed metric in comparing cell lines and quantifying the effect 

of agents that modulate cellular pharmacologic properties. In this way, we aim to demonstrate that 

the response to doxorubicin is predictable and can be summarized in a relatively parsimonious 

mathematical model. 

 

3.2 Abstract 

Treatment response assays are often summarized via sigmoidal functions comparing cell 

survival to applied drug concentration. This approach has a limited a biophysical basis, thereby 

reducing the biological insight to be gained from such analysis. Notably, drug pharmacokinetic 

and pharmacodynamics properties are overlooked in developing treatment response assays, and 

the accompanying summary statistics conflate these processes. Here, we present a coupled 

experimental/modeling approach specifically designed to account for variable cellular 

pharmacokinetics and pharmacodynamics. We propose the equivalent dose metric, a value derived 

from a mechanistic pharmacokinetic/pharmacodynamic model that explicitly accounts for variable 

cell line pharmacological properties, to more precisely summarize treatment response assays. The 

equivalent dose is calculated with cell line specific PK/PD properties, allowing for treatment 

response in different cell lines to be more accurately compared. Further, the approach can 

incorporate the effect of agents that modulate cellular pharmacokinetics and pharmacodynamics, 
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precisely quantifying the effect of those agents. This data can be used to identify novel drivers of 

treatment response and potentially modulate dosing of combination agents. 

 

3.3 Introduction 

The parameterization of in vitro treatment response data is central to biomarker and drug 

discovery and to the quantitative study of cancer therapies. With recent exceptions (130,131), 

investigation of treatment response in vitro has been limited to end-point cell survival assays that 

assess cell viability after a pre-determined time period following treatment with a constant 

concentration of drug. These assays are conventionally summarized by Hill function parameters, 

which compare cell survival to applied drug concentration. While this approach has yielded 

significant insights into cancer biology, it is fundamentally limited by the parameters used to 

summarize treatment response. These parameters do not explicitly characterize the dynamics of 

treatment and subsequent response. Further, response metrics are compared to the extracellular 

concentration of drug in the assay, overlooking drug exposure times and variable cell line 

pharmacologic properties. This not only impairs analysis of treatment response data, but also 

presents a challenge in translating these therapies in vivo. 

There are a host of biochemical processes that can modulate a tumor cell’s response to 

therapy. For example, the accumulation of drug within cells can be altered by several mechanisms, 

including differential drug metabolism or modification of surface proteins that regulate drug flux 

through the membrane (168,169). Indeed, the multi-drug resistance protein 1 (MDR1) is a well-

studied mechanism of resistance to cytotoxic therapies (170). This ATP-dependent pump actively 

effluxes drug from cells, decreases drug accumulation within cells, and confers resistance to 

anthracyclines, taxanes, and several other agents (120). Similarly, pharmacodynamic response to 

therapies can be altered through modulation of signaling pathways downstream of the therapeutic 

target. With respect to DNA-damaging agents, changes in DNA repair pathways, which are 

activated in response to treatment, can alter sensitivity to those agents (171,172). For example, 

DNA-dependent protein kinase (DNA-PK) plays a major role in the repair of double strand DNA 

breaks via non-homologous end joining (173). Increased expression of DNA-PK has been shown 

to confer resistance to doxorubicin, an anthracycline commonly used clinically (174). 

Fundamentally, the cell line-specific pharmacokinetic and pharmacodynamic properties 

described above drive observed survival responses. Using conventional methods, these processes 
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are conflated by the parameters used to summarize in vitro dose response data, such as the EC50, 

which describes the applied concentration of drug that elicits a half-maximal effect (175,176). The 

result is an imprecise measure of drug efficacy, which limits the biological insights to be gained 

from the data. While a pair of recent approaches have proposed normalizing for cellular 

proliferation rate in the analysis of cell survival data (130,131), these still overlook the 

fundamental pharmacologic properties that determine response. 

More precise metrics are required to advance systems approaches to studying cellular 

response to therapy (22). New assays are needed that integrate previous biological insights to more 

effectively advance the study of anticancer therapeutics and identify the biological drivers of 

treatment response. We posit that a mechanistic, mathematical modeling framework is essential to 

maximize the knowledge gained through treatment response studies. In this paradigm, 

biologically-motived mathematical models are constructed to describe observed behaviors of the 

system under investigation. The model is then fit to experimental data, yielding a set of parameter 

values that provide mechanistic insight into observed data. Recently, we proposed and validated a 

coupled pharmacokinetic/pharmacodynamic (PK/PD) model of doxorubicin treatment response in 

vitro (177). The model incorporates measured doxorubicin pharmacokinetics and 

pharmacodynamics and allows for prediction of response following a specified treatment 

timecourse on a cell-line specific basis. Specifically, we observed that the concentration of 

doxorubicin bound to the nucleus, which is estimated with the PK model, is predictive of cell line 

pharmacodynamics. The model behaves consistently across a wide spectrum of treatment 

protocols and cell lines thereby demonstrating that the dynamics of the response of cancer cell 

lines to doxorubicin is predictable. We further noted a mismatch of drug uptake and response 

among the investigated cell lines, suggesting that each cell line has an intrinsic sensitivity to stress 

induced by doxorubicin. By explicitly modeling both drug uptake and subsequent effect, these 

processes can be precisely quantified to study each component of treatment response. 

It is the goal of the present effort to demonstrate the utility of a mechanistic, mathematical 

framework for quantitatively investigating treatment response. We propose to extend the 

radiobiology concept of equivalent dose to account for variable cell line pharmacokinetics and 

pharmacodynamics in the study of chemotherapy. In radiobiology, the equivalent dose is the total 

radiation dose weighted by the sensitivity of tissue to the applied dose, and it is commonly used to 

compare radiation fractionation schedules (178). Similarly, in the context of chemotherapy, we 
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define equivalent dose as a mixed measure of absorbed drug mass and the biological effect of the 

absorbed drug. We further specify that a cell line’s response to therapy be constant for a delivered 

equivalent dose. We posit that this approach will account for varying cellular properties, allowing 

for more precise comparisons to be made among cell lines relative to extracellular drug 

concentration. Finally, we hypothesize that the mechanistic modeling approach will allow for more 

precise application of targeted agents that modulate pharmacologic properties. 

In this work, we demonstrate the utility of the equivalent dose metric by independently 

perturbing cell-line specific doxorubicin pharmacokinetics and pharmacodynamics through the 

use of chemical inhibitors of each process. Specifically, we modulate pharmacokinetics in an 

MDR1 over-expressing cell line and modulate pharmacodynamics via DNA-PK in a BRCA1-

mutated cell line. In this way, we aim to demonstrate that a host of previous knowledge of 

doxorubicin treatment response can be summarized in a relatively parsimonious mathematical 

model. We demonstrate how various pharmacological properties that contribute to observed 

responses can be quantified to provide more precise biological insight into treatment response. 

 

3.4 Materials and Methods 

3.4.1 Mathematical Model of Doxorubicin Treatment Response 

Doxorubicin is an anthracycline that remains standard-of-care therapy for several 

cancers (146). Ultimately, doxorubicin induces a host of cellular stress responses, which either 

inhibit further DNA synthesis allowing for cellular recovery or initiate a cascade leading to cell 

death (147). At high doxorubicin concentrations, extensive DNA damage often results in cell death 

via apoptosis. Low to moderate concentrations of doxorubicin induce cell senescence, and cell 

death occurs primarily via mitotic catastrophe (151,152). Whereas apoptosis is immediate (on the 

order of hours to days), mitotic catastrophe is a relatively protracted process (on the order of 

several days). 

We previously developed and validated a parsimonious treatment response model to 

describe doxorubicin pharmacokinetics and pharmacodynamics. Briefly, a three-compartment 

model was employed to describe the uptake and binding of doxorubicin in cancer cells. This 

process is modeled via mass conservation through Eqs. (3.1) - (3.3):  

 
( ) ( ) ( )E I

FE F EF E
E

dC t vk C t k C t
dt v

= −   (3.1) 
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where CE (t), CF (t), and CB (t) are the concentrations of doxorubicin in the extracellular, free, and 

bound compartments, respectively, at time t. The free compartment represents drug that has 

diffused into the cell, while the bound compartment represents drug that has bound to the DNA. 

The kij parameters are rate constants that describe the movement of doxorubicin between each of 

these compartments; for example, kFE describes the rate of drug transfer from the free, intracellular 

compartment to the extracellular compartment.  Similar definitions apply to kEF and kFB. The 

volumes of the extracellular and intracellular compartments are denoted with vI and vE, 

respectively. 

A logistic growth model, Eq. (3.4), modified by either of two time-dependent response 

functions, Eqs. (3.5) and (3.6), reflecting distinct mechanisms of cell death, was proposed to 

describe population level response to doxorubicin therapy as follows: 
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where kp and kd are the proliferation and dose-specific death rates, respectively, D is the delivered 

dose (defined to be the bound concentration of drug calculated with Eqs. (3.1) – (3.3)), r is a dose-

specific constant describing the rate at which treatment induces an effect, θ is the dose-specific 

carrying capacity describing the maximum number of cells that can be observed in the 

experimental system, and NTC (t) is the number of tumor cells at time t. Prior to treatment (i.e., 

t < 0), cells are modeled to have a constant proliferation rate, kp. Following treatment at t = 0, Eq. 

(3.5) assumes an immediate induction of a stable, post-treatment death rate (kd,a). Eq. (3.6) allows 

for a smooth induction of drug effect following treatment to a maximum death rate of kd,b, while 

ultimately allowing for recovery of the cell population. The dynamics of this induction and decay 
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is governed by r. A weighted averaging approach is used to incorporate both Eqs. (3.5) and (3.6) 

in the treatment response model. Further details on the model can be found in previous work (177). 

 

3.4.2 Equivalent Dose 

We define equivalent dose as a mixed measure of absorbed drug mass and the biological 

effect of the absorbed drug. We further specify that a cell line’s response to therapy (e.g., the 

response modeled by Eqs. (3.4) – (3.6)) be constant for a delivered equivalent dose. A target 

equivalent dose can be achieved in a variety of ways. For example, the extracellular drug 

concentration timecourse can be tuned to reach a specified equivalent dose. Alternatively, the same 

equivalent dose can be achieved by altering cell line pharmacologic properties with concomitant 

changes in the extracellular drug timecourse. 

In the context of doxorubicin therapy, we define equivalent dose (Deq) as the functional 

concentration of drug that is bound to the nucleus following therapy. As described above, 

doxorubicin diffuses into the cell, where it subsequently binds to the nucleus to exert its effect. 

Notably, in proposing the equivalent dose, we lump pharmacodynamic effects into the kFB term. 

Specifically, kFB is a mixed measure of doxorubicin binding and DNA repair. The equivalent dose 

is illustrated in Figure 3.1.  

To calculate Deq for a specified treatment condition (i.e., extracellular drug concentration 

timecourse), Eqs. (3.1) – (3.3) are populated by cell-line- and treatment-specific kEF, kFE, and kFB 

parameters derived from experimental data (described below). The model is then run forward in 

time using the experimentally-defined extracellular doxorubicin concentration timecourse. Deq is 

the maximum concentration of bound drug (CB) as predicted by the simulation. We have previously 

shown that this metric can summarize doxorubicin treatment timecourses and is predictive of 

doxorubicin treatment response (177). We hypothesize that the equivalent dose metric will account 

for variable cell line pharmacologic properties through its explicit consideration of kEF, kFE, and 

kFB rates, and it will be able to describe the effect of agents that modulate those properties.  

 

3.4.3 Cell Lines 

The MDA-MB-468 and SUM-149PT cell lines were obtained through American Type 

Culture Collection (ATCC, http://www.atcc.org) and maintained in culture according to ATCC 

recommendations. Cell lines were passaged no more than 30 times before being discarded.  
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Figure 3.1: Overview of equivalent dose metric. The response to therapy is determined by the 
applied drug concentration and cell-specific pharmacologic properties. Traditionally, therapeutic 
response is summarized relative to the applied extracellular concentration of drug. We propose the 
equivalent dose metric, Deq, to summarize the contributions of various pharmacologic properties 
in shaping treatment response. We define equivalent dose as a mixed measure of absorbed drug 
mass and the biological effect of the absorbed drug. We further specify that a cell line’s response 
to therapy be constant for a delivered equivalent dose. The equivalent dose is calculated through a 
mechanistic biophysical model that considers several sources of variability in shaping treatment 
response. The metric consolidates variable drug uptake (quantified with kEF), efflux (quantified 
with kFE), and binding (quantified with kFB) into a single descriptor of treatment. The equivalent 
dose allows for more precise comparison of cell lines and provides a quantification of 
pharmacologic properties to provide biological insight into treatment response.  
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To facilitate automated image analysis for identifying and quantifying individual nuclei in 

the time-lapsed fluorescent microscopy experiments (described below), each cell line was 

modified to express a histone H2B conjugated to monomeric red fluorescent protein (H2BmRFP; 

Addgene Plasmid 18982) as previously described (140,141).  

To specifically modulate pharmacokinetics, the H2BmRFP-expressing MDA-MB-468 cell 

line (MDA-MB-468H2B) was transduced to express a green fluorescent protein (GFP)-tagged 

MDR1 protein (ABCB1 gene, Origene Technologies, Rockville, MD). Following transduction, the 

cell line was cultured in 100 nM doxorubicin for two weeks to select a doxorubicin-resistant 

phenotype (MDA-MB-468MDR1). These cells were subsequently serially imaged to ensure that all 

surviving cells expressed GFP, and the expression of the GFP-MDR1 was stable. 

To specifically modulate cellular pharmacodynamics, the DNA damage repair pathway in 

the SUM-149PT cell line was targeted. The SUM-149PT cell line possesses a BRCA1 2288delT 

mutation (179). BRCA1 is involved in maintaining genome stability through its role in repairing 

double strand DNA-breaks via homologous recombination (180). The BRCA1 mutation causes an 

increased reliance on alternate DNA damage repair pathways, such as non-homologous end 

joining (181).  

 

 

Table 3.1: Model parameter definitions 

Model Parameter Units Definition 
kEF hr-1 Rate of drug influx into cell 
kFE hr-1 Rate of drug efflux from cell 
kFB hr-1 Mixed rate of drug binding and DNA repair 
CE nM Extracellular doxorubicin concentration 
CI nM Intracellular, extranuclear doxorubicin concentration 
CB nM Concentration of doxorubicin bound to the nucleus 
Deq nM Equivalent dose 
NTC Count Number of cells 
kp hr-1 Proliferation rate of cells 
θ Count Carrying capacity of experimental system 

kd,a hr-1 Death rate assumed in Eq. (3.5) 
kd,b hr-1 Death rate assumed in Eq. (3.6) 
r hr-1 Rate of induction and decay of death rate in Eq. (3.6) 
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3.4.4 Chemicals 

 Doxorubicin was purchased from Sigma Aldrich (St. Louis, MO) and dissolved to a 1 mM 

stock concentration in sterile saline for subsequent experiments. Tariquidar (TQR) is a third-

generation MDR1 inhibitor that non-competitively inhibits MDR1 function (182). TQR is 

leveraged to modulate doxorubicin pharmacokinetics in the MDA-MB-468MDR1 cell line. NU7441 

is a DNA-PK inhibitor that has been investigated as a means to improve treatment response to 

DNA-damaging agents (116,183). NU7441 is used to modulate doxorubicin pharmacodynamics 

in the SUM-149PT cell line. TQR and NU7441 were both purchased from Selleckchem 

(Boston, MA). Each was dissolved to a 1 mM stock concentration in DMSO. We subsequently 

refer to these therapies (TQR and NU7441) as sensitizers. All solutions were stored in 250 µL 

aliquots at -80 °C. 

 

3.4.5 Doxorubicin Uptake Imaging and Image Processing 

Time resolved fluorescent microscopy was employed to characterize the uptake of 

doxorubicin by each cell line (MDA-MB-468H2B, MDA-MB-468MDR1, and SUM-149PT) using a 

modification of the previously-published drug uptake assay (177). The method leverages the 

intrinsic fluorescence of doxorubicin to quantify the movement of doxorubicin from the 

extracellular space into cells. Briefly, each cell line was introduced into 96-well microtiter plates 

at ~10,000 cells per well. Each well was imaged at 20-25 minute intervals via fluorescent 

microscopy (at several wavelengths as described below) with a 20× objective in 2×2 image 

montages on a BD Pathway 855 Bioimager (BD Biosciences, San Jose, CA). Imaging began one 

hour prior to and continued for approximately 24 hours following application of 1 µM of 

doxorubicin. After eight hours, doxorubicin was removed via media replacement. To measure the 

effect of TQR and NU7441 on drug uptake kinetics in the MDA-MB-468MDR1 and the SUM-149PT 

cell lines, respectively, each modulator was applied over a range of concentrations (250 – 2 nM 

for TQR and 2 µM - 16 nM for NU7441 both via a two-fold dilution series) one hour prior to 

doxorubicin application. At least three replicates of each treatment condition were collected. 

To correct for uneven background illumination, the illumination function for each image 

was first estimated (184). The image is defined: 

 ( )I L C b= +  , 
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where I is the image, L is the illumination function, C is signal from cells, and b is the background. 

The signal from cells is removed from each image through use of a median disc filter with a radius 

of 50, isolating b. To estimate L, the background-only images in each well are averaged over all 

timepoints. A smooth surface is fit to this averaged image, and the surface is normalized to a 

maximum value of 1. Each image in the time series is divided by this surface (L) to correct for 

uneven illumination. The result of the correction approach is illustrated in Figure 3.2. A threshold-

based approach is used to segment each cell. An example segmentation is illustrated in Figure 3.2. 

To account for the various fluorophores in the experiment (H2BRFP, MDR1GFP, and 

doxorubicin), a linear unmixing approach was employed to isolate the signal from each 

fluorophore to more precisely quantify doxorubicin accumulation (185). The approach leverages 

spectral imaging data collected at multiple excitation and emission wavelengths to isolate the 

signal from each fluorophore. This method can also be used for background subtraction by 

modeling the background (here, the signal from cell culture media) as an additional fluorophore. 

For these experiments, we define four fluorophores of interest: MDR1GFP, doxorubicin, 

H2BRFP, and background. The observed images are modeled as a linear combination of the 

signals from each of these fluorophores: 

 [ ]2 4 1 2 ...H B MDR Dox background n nS S S S T I I I×  =   , 

where SH2B is the signal from the H2BRFP, SMDR is the signal from the GFP-tagged MDR1, SDox is 

the signal from doxorubicin, and Sbackground is the background signal from cell culture media. T is 

the transformation matrix that estimates the contribution from each fluorophore in creating each 

image I. In this work, five images (n=5) were collected at each timepoint. The excitation, dichroic, 

and emission filters for each image are listed in Table 3.2. 

 

Table 3.2. Filter settings 

Image Excitation 
(nm) 

Dichroic (nm) Emission (nm) 

I1 470/40 515, longpass 515, longpass 
I2 470/40 515, longpass 570, longpass 
I3 470/40 515, longpass 575/25 
I4 470/40 515, longpass 540/50 
I5 548/20 595, longpass 645/75 
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 To construct T, images of each fluorophore are collected from control samples. 

Specifically, control images of GFP, H2BRFP-positive cells, doxorubicin, and background are 

collected. For each fluorophore, the image with the highest intensity is assumed to be the true 

image; i.e., the corresponding entry in T is set to 1. The relative intensity of the other four images 

with respect to the true image are then estimated. This normalized spectrum is deposited into the 

row of T corresponding to the current fluorophore. T is estimated at each timepoint to compensate 

for any temporal changes in fluorophore intensity. 

With an estimate of T and a spectral image set for each well at each timepoint, the 

underlying signals (i.e., SH2B, SMDR, SDox, Sbackground) can be estimated using QR decomposition 

(implemented in MATLAB (Natick, MA)). This can be done on a per-pixel basis as shown in 

Figure 3.2. However, as we are only interested in intracellular and extracellular doxorubicin 

signals, the average value from each image in the intracellular and extracellular (Ii,I, Ii,E) space was 

calculated using a cell segmentation (as detailed above). Each signal can then be recovered: 

 2 , , , , 1, 5,
4

2 , , , , 1, 5,

H B I MDR I Dox I background I I I
n

H B E MDR E Dox E background E E E

S S S S I I
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   
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 , 

where SDox,I and SDox,E are the signals from doxorubicin in the intracellular and extracellular spaces, 

respectively. Similar definitions apply for the other signals S.  

Finally, SDox is converted into doxorubicin concentration. We assume that doxorubicin 

signal is linearly proportional to its concentration, [Dox] (177): 

 [ ]DoxS a Dox b= +  . 

To calibrate this model, images are collected on a series of wells containing a range of known 

doxorubicin concentrations. Estimates of a and b are obtained by fitting the doxorubicin signal 

equation to these control data.  

 

3.4.6 Doxorubicin Treatment Response Imaging 

Using the previously-published dose-response assay, each cell line was treated with a range 

of doxorubicin concentrations (5000 to 10 nM via a two-fold dilution series) for 24 hours as 

monotherapy. Additionally, the sensitizing effects of TQR and NU7441 in the MDA-MB-468MDR1 

and the SUM-149PT cell lines, respectively, were investigated by applying those therapies over a  
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Figure 3.2: Doxorubicin image processing pipeline. Five images of each well at each timepoint 
are collected. Sample images of I4 and I5 at a representative timepoint are shown in a and b, 
respectively. The uneven illumination of these images is corrected through use of the image 
illumination function. Corrected images of a and b are shown in c and d, respectively. A linear 
unmixing approach is employed to estimate the signal from each fluorophore present in the 
experimental system. Sample reconstructed signals (i.e., SDox, SMDR, SH2B, and Sbackground) are shown 
in e-h. Cells are segmented via a threshold approach (red outline in i and j). The doxorubicin signal 
in the intracellular space over time can then be extracted from these images (k) and converted into 
concentration timecourses (l) to be fit by Eqs. (3.1) – (3.3). 
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range of concentrations one hour prior to application of doxorubicin. TQR concentrations in a two-

fold dilution series from 250 - 2 nM were used for the MDA-MB-468MDR1 cell line, and NU7441 

concentrations in a two-fold dilution series from 2 µM - 15 nM were used for the SUM-149PT cell 

line. These combination studies were each performed at three doxorubicin concentrations. All drug 

(doxorubicin and sensitizer) was removed from each well via media replacement at 24 hours. 

These cells were imaged daily via fluorescent microscopy for at least 15 days following treatment. 

For these studies, fluorescence microscopy images were collected using a Synentec Cellavista 

High End platform (SynenTec Bio Services, Münster, Germany) with a 20× objective and tiling 

of 25 images, each collected with 650 ms excitation with 529 nm light and emissions collected at 

585 nm. Nuclei were segmented and counted in ImageJ (http://imagej.nih.gov/ij/) using a 

previously-described, threshold-based method (150) to quantify cell population. Six replicates of 

each treatment condition were collected. Media was refreshed every 3 days for the duration of each 

experiment to ensure sufficient growth conditions for surviving cells. Data are manually truncated 

when the cell population reaches carrying capacity. At this point, the signals from neighboring 

nuclei overlap, and the cell counting becomes unreliable. 

 

3.4.7 Model Fits 

The three-compartment model described in Eqs. (3.1) – (3.3) was fit to the uptake data 

under each treatment condition (doxorubicin monotherapy and doxorubicin combination with 

sensitizer) for each cell line using a nonlinear least squares optimization implemented in 

MATLAB. Of note, each cell line is assumed to have a single set of compartment model parameters 

(kEF, kFE, and kFB) for each sensitizer concentration (i.e., a parameter set for doxorubicin 

monotherapy and a set for each sensitizer concentration). Mean errors of the best-fit model across 

all timepoints are reported. 

Similarly, the response model described by Eqs. (3.4) – (3.6) was fit to the dose response 

data from all treatment conditions (i.e., doxorubicin monotherapy and doxorubicin combination 

with sensitizer) for each cell line. Each treatment condition in each cell line was fit independently, 

yielding cell line- and treatment condition-specific parameter values. This was accomplished 

through a nonlinear least squares optimization implemented in MATLAB. For additional details 

on the model fitting procedure see (177). We report on the mean percent errors of the best fit 

models across all timepoints. 
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Of note, in defining the equivalent dose statistic, the kFB term is a mixed measure of 

doxorubicin binding and DNA repair. While doxorubicin binding can be measured in the uptake 

studies above, DNA repair cannot be directly observed in the course of the experiment (we note 

there exists several methods to assay DNA damage, but these are destructive assays that can only 

measure DNA damage at a single timepoint (186,187)). For doxorubicin monotherapy, we define 

kFB as the binding rate of doxorubicin to the nucleus as measured in the uptake studies. To estimate 

kFB for doxorubicin co-treatment with agents that modulate DNA repair (e.g., NU7441), we 

leverage the treatment response parameters (i.e., the parameters in Eqs. (3.4) – (3.6)) and the 

definition of equivalent dose as described below. 

We assume, by definition, that a specified equivalent dose elicits a specific treatment 

response. Conversely, a specified treatment response is summarized by a specific equivalent dose. 

Accordingly, similar treatment responses should have similar equivalent doses. We use this 

relationship to estimate the equivalent dose for each co-treatment condition. Specifically, treatment 

response under all treatment conditions (i.e., doxorubicin monotherapy and co-treatment with a 

sensitizer) can by summarized by the parameters in Eqs. (3.4) – (3.6) (i.e., p = [kd,a, kd,b, r]). For 

doxorubicin monotherapy conditions, the equivalent dose is calculated using the kFE, kEF, and kFB 

values estimated from the uptake studies. Notably, per the definition of kFB above, the equivalent 

doses calculated for these doxorubicin monotherapy conditions are perfectly known. The 

parameters (p) from these doxorubicin monotherapy experiments are then interpolated with respect 

to equivalent dose. This yields a continuous set of parameters (pest) across all possible equivalent 

doses in the range from no treatment to maximal doxorubicin dose. The fit parameter values (p) 

for each of the m co-treatment conditions are then matched to the interpolated parameters from the 

doxorubicin-only treatment condition (pest) to estimate the expected equivalent dose (Dest). 

Specifically, Dest is the set of equivalent doses corresponding to the interpolated parameter set (pest) 

that best matches the fit parameter values from each co-treatment condition (i.e., 
2

min estp p− ). 

This process is illustrated in Figure 3.3. The following constrained objective function, G (kFB), can 

then be used to estimate kFB for each of the n sensitizer concentrations: 
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Figure 3.3: Calculating Dest. The treatment response model is fit to all data (doxorubicin 
monotherapy and co-treatment), yielding a set of parameters, p = [kd,a, kd,b, r], for each treatment 
condition. These parameters are plotted against equivalent dose (Deq), as calculated with the kEF, 
kFE, and kFB parameters derived from the uptake studies. The black points are taken from the 
doxorubicin monotherapy conditions. The data in red, blue, and green represent data from three 
experiments each with a unique, fixed doxorubicin concentration and variable sensitizer 
concentrations. To optimize kFB for each sensitizer concentration, the equivalent dose for each co-
treatment condition is first estimated using the doxorubicin-only treatment condition parameters 
(with perfectly-known Deq) as follows. We hypothesize that the all treatment responses, as 
quantified by the parameters p, should fall along a smooth continuum. Accordingly, the parameter 
fits from co-treatment conditions are mapped to the doxorubicin-only treatment (right-facing 
arrows), and the estimated dose (Dest) is the equivalent dose that corresponds to the match (down-
facing arrows). Notably, we assume a unique value for kFB for each sensitizer concentration. 
Parameters from a single sensitizer concentration at multiple doxorubicin doses are circled below.  
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where the Di is the equivalent dose for each co-treatment condition as described below and Dest,i 

is the expected equivalent dose for each co-treatment condition as described above. The equivalent 

dose for each co-treatment condition, Di, is calculated as described in Section 3.4.2. Specifically, 

in calculating Di, we use the kEF and kFE values measured from uptake studies and the optimized 

kFB value corresponding to the sensitizer concentration in the co-treatment condition. This 

objective function matches parameter fits from co-treatment conditions to those from doxorubicin-

only treatments. The constraints in the objective function ensure that kFB increases monotonically 

with sensitizer concentration. This objective function was minimized via a constrained 

optimization routine implemented in MATLAB.  

To validate this approach of inferring cellular properties from population-level treatment 

response measurements, we repeat the above approach to estimate varying doxorubicin efflux 

parameters in the MDA-MB-468MDR1 cell line under treatment with TQR. Specifically, we use 

values for kEF and kFB measured from the uptake assay, and we assume the kEF value measured in 

the uptake study under doxorubicin monotherapy is perfectly known. Values of kFE for each TQR 

concentration are then optimized in the same way as kFB. The optimized values are compared to 

those experimentally measured in the uptake assay.  

 

3.4.8 Comparison of Cell Lines with Equivalent Dose 

As the MDA-MB-468MDR1 line was engineered from the MDA-MB-468H2B line, we 

hypothesize that the response of these cell lines is not significantly different when compared via 

equivalent dose. Indeed, the proposed equivalent dose metric was developed to account for the 

differing pharmacokinetic properties between these cell lines to more precisely compare their 

respective responses to therapy. Specifically, cell survival 3 days following treatment of the 

parental MDA-MB-468H2B cell line is compared to that of the MDA-MB-468MDR1 cell line when 

the varying pharmacokinetic properties are normalized using Deq calculated with cell-line specific 

kEF, kFE, and kFB values. For comparison with previous assays, we report the EC50 for each of these 

cell lines as measured via extracellular doxorubicin concentration and equivalent dose.  

 

3.5 Results 

3.5.1 Treatment Response in MDA-MB-468MDR1 Line 
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The measured intracellular doxorubicin concentration timecourses for the 

MDA-MB-468MDR1 cell line under doxorubicin monotherapy and combination therapy with TQR 

are shown in Figure 3.4. Intracellular doxorubicin increases with increases in TQR concentration. 

The average intracellular concentration over the last 10 timepoints is significantly different among 

the treatment groups (one-way ANOVA, p < 1e-5). Eqs. (3.1) – (3.3) are fit to these data, and the 

best fit model is overlaid on the timecourses. The mean error of the best fit pharmacokinetic model 

was 45.6 nM across all treatment conditions, and the corresponding model parameters are shown 

in Figure 3.4. Increasing TQR concentrations decrease doxorubicin efflux in the 

MDA-MB-468MDR1 cell line in a dose-dependent manner. For example, the efflux rate is decreased 

from 0.216 (±0.028) hr-1 to 0.046 (±0.008) hr-1 as TQR increases from 2 nM to 250 nM (the bounds 

here and below correspond to the 95% confidence interval of the parameter estimates). Similar 

values of kEF were observed across all TQR concentrations, ranging from [1.63, 3.46] ×10-6 hr-1. 

Treatment response timecourses of the MDA-MB-468MDR1 line to doxorubicin 

monotherapy are shown in Figure 3.5. Eqs. (3.4) – (3.6) are fit to these data, and the best fit models 

are overlaid on the observed cell counts. The mean percent error of the best fit model across all 

treatment conditions is 10.26%. The MDA-MB-468MDR1 line demonstrated a proliferation rate (kp) 

of 2.12 (±0.03) ×10-2 hr-1. A graded dose response to doxorubicin was observed, and this response 

is quantified by the parameters in Figure 3.5. Treatment response timecourses with accompanying 

best-fit model overlays under co-treatment with TQR are shown in Figure 3.6. For a fixed 

concentration of doxorubicin, increasing concentrations of TQR increases the sensitivity of the 

cell line to treatment. For example, at a fixed dose of 156 nM doxorubicin, increasing the TQR 

concentration from 0 to 250 nM increased the death rate (kd,a) from -0.16 (±0.23) ×10-2 hr-1 to 

2.21 (±0.1) ×10-2 hr-1. TQR monotherapy did not affect the growth of these cells as shown in 

Figure 3.7. Notably, high variance in parameter estimates is observed as values of r approach 

0.05 hr-1 and values of kd,b approach 0 hr-1. There exists intrinsic uncertainty at this limit as the 

rapid dynamics (r) coupled with small kd,b effects cannot be resolved by the current data. This 

uncertainty in r for small kd,b does not affect model predictions as demonstrated by a sensitivity 

analysis in previous work (177). 

As similar values of kEF and kFB were observed in fitting the TQR uptake curves and TQR 

is a specific inhibitor of MDR1, we hypothesized that its effects are limited to kFE. The uptake data 

were re-analyzed fixing kEF and kFB across all TQR concentrations and allowing kFE to vary as a 
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Figure 3.4: Doxorubicin uptake in MDA-MB-468MDR1 under doxorubicin combination therapy 
with TQR. The mean intracellular concentrations with corresponding standard deviations are 
shown throughout the course of the uptake study for each treatment condition in a. Doxorubicin 
accumulation increases with increasing concentrations of TQR. Eqs. (3.1) – (3.3) were fit to the 
data, and the best fit models are overlaid on the data (smooth lines) in a. Model parameter fits 
corresponding to the best fits models are shown in b-d. The control data (0 nM TQR) is shown in 
red. Similar kEF and kFB vales are observed across all TQR concentrations. There is a trend of 
decreasing kFE values with increasing TQR concentrations, consistent with MDR1 inhibition by 
TQR. 
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Figure 3.5: Treatment response in MDA-MB-468MDR1 cell line under doxorubicin monotherapy. 
The top plot shows cell counts over time from treatment response studies. For these studies, cells 
were treated with a fixed concentration of doxorubicin for 24 hours. These counts are fit to Eqs. 
(3.4) - (3.6) as described in Section 3.4.7, and the best fit model is overlaid on the cell counts 
(smooth lines in top panel). The model fits and cell counts are color-coded to reflect the varying 
doxorubicin concentrations used. Error bars represent the 95% CI from six experimental replicates 
for each treatment condition. Model parameters with corresponding 95% CI are shown in the 
bottom row as a function of doxorubicin concentration. For each doxorubicin concentration, the 
death rate (kd,a and kd,b) increased with increasing doxorubicin concentrations. 
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Figure 3.6: Treatment response in MDA-MB-468MDR1 cell line under combination therapy with 
doxorubicin and TQR. The top row shows cell counts over time from treatment response studies. 
In each plot, a fixed concentration of doxorubicin is applied with variable TQR concentrations. 
These counts are fit to Eqs. (3.4) - (3.6) as described in Section 3.4.7, and the best fit model is 
overlaid on the cell counts (smooth lines in top panels). The model fits and cell counts are color-
coded to reflect the varying TQR concentrations used. Error bars represent the 95% CI from six 
experimental replicates for each treatment condition. Model parameters with corresponding 95% 
CI are shown in the bottom row as a function of TQR concentration. Data are color-coded to reflect 
the doxorubicin concentration used. For each doxorubicin concentration, the death rate (kd,a and 
kd,b) increased with increasing TQR concentrations. 
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Figure 3.7: TQR-only and NU7441-only control data for the MDA-MB-468MDR1 and SUM-149PT 
cell line, respectively. Cell count data with corresponding standard deviations over time under 
treatment with a range of TQR and NU7441 demonstrate that no significant difference in cell 
counts under monotherapy with either TQR or NU7441. The effect of these therapies is limited to 
co-treatment with doxorubicin. 
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function of TQR. The mean error for this fit to the MDA-MB-468MDR1 uptake data was 95.9 nM. 

Under this assumption, kEF and kFE were measured to be 3.08 ×10-6 hr-1 and 0.0212 hr-1 across all 

TQR concentrations, respectively. The kFE value for doxorubicin monotherapy was 0.313 hr-1. The 

equivalent dose statistic was calculated for all treatment conditions in the MDA-MB-468MDR1 cell 

line. For these calculations, the kFE value for each TQR concentration was estimated with the 

optimization routine outlined in section 3.4.7, and the kEF and kFB values were fixed to the values 

reported above. The optimized kFE values for each TQR concentration are shown in Figure 3.8. 

Decreasing kFE values are observed with increasing TQR concentrations, matching the 

measurements from the uptake studies in Figure 3.4. The equivalent dose can describe all treatment 

conditions with a single statistic that is predictive of response (Figure 3.8). When response model 

parameters (i.e., kd,a, kd,b, and r) from all treatment conditions (doxorubicin monotherapy and 

combination therapy) are plotted as a function of equivalent dose, they fall along a single, smooth 

path. The response of the MDA-MB-468MDR1 cell line is a function of Deq. 

 

3.5.2 Treatment Response in SUM-149PT Line 

The measured intracellular doxorubicin concentration timecourses for the SUM-149PT cell 

line under doxorubicin monotherapy and combination therapy with NU7441 are shown in 

Figure 3.9. Eqs. (3.1) – (3.3) are fit to these data, and the best fit model is overlaid on the 

timecourses. The corresponding model parameters are shown in Figure 3.9. The mean error of the 

best fit pharmacokinetic model was 90.9 nM across all treatment conditions and timepoints. 

NU7441 does not affect intracellular doxorubicin accumulation. Comparing the intracellular 

doxorubicin concentration over the last 10 timepoints among all sensitizer concentrations, no 

significant difference is observed at the p = 0.05 significance level (one-way ANOVA). Further, 

similar values of kFE, kEF, and kFB are observed across all NU7441 concentrations. Of note, the 

95% CI’s are particularly large for kFE as the brightest cells in each well are often removed along 

with doxorubicin at 8 hours, causing an artificially high decrease in intracellular doxorubicin 

accumulation following treatment. 

Treatment response timecourses of the SUM-149PT line to doxorubicin monotherapy are 

shown in Figure 3.10. Eqs. (3.4) – (3.6) are fit to these data, and the best fit models are overlaid 

on the observed cell counts. The mean percent error of the best fit model across all treatment 

conditions is 11.92%. The SUM-149PT line demonstrated a proliferation rate (kp) of  
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Figure 3.8: Treatment response in the MDA-MB-468MDR1 cell line varies smoothly as a function 
of equivalent dose. TQR impairs the function of the MDR1 pump, decreasing doxorubicin efflux. 
Subsequently, we hypothesized the effect of TQR is limited to the kFE parameter (a). Significant 
differences were observed in doxorubicin accumulation under treatment with TQR (b). The colors 
from blue to red represent increasing TQR concentrations. Estimates of kFE were obtained through 
the optimization routine in Section 3.4.7, and optimized kFE are plotted as a function of TQR 
concentration in panel c. Model parameters from all treatment conditions (doxorubicin 
monotherapy and co-treatment with TQR) are plotted as a function of equivalent dose in d-f. The 
black points are from the doxorubicin monotherapy experiments. The red, green, and blue points 
are from combination experiments with 78 nM, 156 nM, and 312 nM doxorubicin, respectively. 
Note that parameter values vary smoothly as a function of equivalent dose (Deq). The treatment 
response from a subset of treatment conditions is shown in panels g-i. These plots are color-coded 
by the equivalent dose describing each treatment condition. Similar colors demonstrate similar 
timecourses. Similar treatment response timecourses are observed across different doxorubicin 
monotherapy and co-treatment conditions. The equivalent dose can describe all monotherapy and 
co-treatment conditions with a single statistic that is predictive of response. 
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2.58 (±0.03) × 10-2 hr-1. A graded dose response to doxorubicin was observed, and this response 

is quantified by the parameters in Figure 3.10. Treatment response timecourses with accompanying 

best-fit model overlays under doxorubicin co-treatment with NU7441 are shown in Figure 3.11. 

For a fixed concentration of doxorubicin, increasing concentrations of NU7441 increased the 

sensitivity of the cell line to doxorubicin. For example, with a fixed dose of 156 nM doxorubicin, 

NU7441 concentrations increased the death rate (kd,a) from 0.25 (±0.16) × 10-2 hr-1 to 

2.00 (±0.06) ×10-2 hr-1. Notably, NU7441 as monotherapy did not affect the growth of these cells 

as shown in Figure 3.7. 

The equivalent dose statistic was calculated for all treatment conditions in the SUM-149PT 

cell line. The kFB value for each NU7441 concentration was estimated with the optimization routine 

outlined in section 3.4.7. Notably, as similar concentrations were observed in the uptake studies, 

kEF and kFE were fixed to 4.00 ×10-6 hr-1 and 0.165 hr-1 for all NU7441 concentrations, respectively. 

For doxorubicin monotherapy, kFB was set to 0.236 hr-1. These were calculated by fitting the 

SUM-149PT uptake studies assuming constant parameters for all NU7441 concentrations. The 

mean error for this fit to the SUM-149PT uptake data was 68.5 nM. Increasing kFB values are 

observed with increasing NU7441 concentrations (Figure 3.12). We attribute kFB values smaller 

than the doxorubicin monotherapy to experimental error. In these cases, the effect of treatment is 

small (death rates near 0 hr-1). The equivalent dose can describe all treatment conditions with a 

single statistic that is predictive of response. When response model parameters (i.e., kd,a, kd,b, and 

r) from all treatment conditions (doxorubicin monotherapy and combination therapy) are plotted 

as a function of equivalent dose, they fall along a single, smooth path. The response of the 

SUM-149PT cell line is a function of Deq. 

 

3.5.3 Comparison of MDA-MB-468MDR1 and MDA-MB-468H2B 

The measured intracellular doxorubicin concentration timecourses with accompanying 

best-fit models for the MDA-MB-468H2B and MDA-MB-468MDR1 are shown in Figure 3.13. 

Decreased doxorubicin accumulation was observed in the MDA-MB-468MDR1 cell line relative to 

its parental line, MDA-MB-468H2B. Notably, the drug efflux was significantly elevated in the 

MDA-MB-468MDR1 line relative to its parental line with kEF values of 1.01(±0.08) × 10-1 hr-1 and 

0.52 (±0.04) × 10-1 hr-1, respectively (p < 0.05). The mean errors of the best fit pharmacokinetic 
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Figure 3.9: Doxorubicin uptake in SUM-149PT under doxorubicin combination therapy with 
NU7441. The mean intracellular concentrations with corresponding standard deviations are shown 
throughout the course of the uptake study for each treatment condition in a. No significant 
difference in doxorubicin accumulation was observed as a function of NU7441 concentration. Eqs. 
(3.1) – (3.3) were fit to the data, and the best fit models are overlaid on the data (smooth lines) in 
a. Model parameter fits corresponding to the best fits models are shown in b-d. The control data 
(0 nM NU7441) is shown in red. For each model parameter, similar vales were observed across all 
NU7441 concentrations, consistent with the similar intracellular doxorubicin timecourses in a. 

 

 

  



 85 

Figure 3.10: Treatment response in SUM-149PT cell line under doxorubicin monotherapy. The 
top plot shows cell counts over time from treatment response studies. For these studies, cells were 
treated with a fixed concentration of doxorubicin for 24 hours. These counts are fit to Eqs. (3.4) - 
(3.6) as described in Section 3.4.7, and the best fit model is overlaid on the cell counts (smooth 
lines in top panels). The model fits and cell counts are color-coded to reflect the varying 
doxorubicin concentrations used. Error bars represent the 95% CI from six experimental replicates 
for each treatment condition. Model parameters with corresponding 95% CI are shown in the 
bottom row as a function of doxorubicin concentration. For each doxorubicin concentration, the 
death rates (kd,a and kd,b) increased with increasing doxorubicin concentrations. 
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Figure 3.11: Treatment response in SUM-149PT cell line under combination therapy with 
doxorubicin and NU7441. The top row shows cell counts over time from treatment response 
studies. In each plot, a fixed concentration of doxorubicin is applied with variable NU7441 
concentrations. These counts are fit to Eqs. (3.4) - (3.6) as described in Section 3.4.7, and the best 
fit model is overlaid on the cell counts (smooth lines in top panels). The model fits and cell counts 
are color-coded to reflect the varying NU7441 concentrations used. Error bars represent the 95% 
CI from six experimental replicates for each treatment condition. Model parameters with 
corresponding 95% CI are shown in the bottom row as a function of NU7441 concentration. Data 
are color-coded to reflect the doxorubicin concentration used. For each doxorubicin concentration, 
the death rate (kd,a) increased with increasing NU7441 concentrations. 
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Figure 3.12: Treatment response in the SUM-149PT cell line varies smoothly as a function of 
equivalent dose. NU7441 impairs the DNA damage response in the SUM-149PT cell line. 
Subsequently, we hypothesized the effect of NU7441 is limited to the kFB parameter (a). No 
significant difference is observed in doxorubicin accumulation under treatment with NU7441 (b). 
The colors from blue to red represent increasing NU7441 concentrations. Estimates of kFB were 
obtained through the optimization routine in Section 3.4.7, and optimized kFB are plotted as a 
function of NU7441 concentration in panel c. Model parameters from all treatment conditions 
(doxorubicin monotherapy and co-treatment with NU7441) are plotted as a function of equivalent 
dose in d-f. The black points are from the doxorubicin monotherapy experiments. The red, green, 
and blue points are from combination experiments with 39 nM, 78 nM, and 156 nM doxorubicin, 
respectively. Note that parameter values vary smoothly as a function of equivalent dose (Deq). The 
treatment response from a subset of treatment conditions is shown in panels g-i. These plots are 
color-coded by the equivalent dose describing each treatment condition. Similar colors 
demonstrate similar timecourses. Similar treatment response timecourses are observed across 
different doxorubicin monotherapy and co-treatment conditions. The equivalent dose can describe 
all monotherapy and co-treatment conditions with a single statistic that is predictive of response. 
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models across all timepoints were 44.7 nM and 58.7 nM for the MDA-MB-468H2B and the 

MDA-MD-468MDR1 lines, respectively. 

The survival of each cell line three days following treatment is compared as a function of 

extracellular doxorubicin concentration and equivalent dose in Figure 3.13. The EC50 as measured 

with the extracellular doxorubicin concentration for the MDA-MB-468H2B and the 

MDA-MB-468MDR1 are 101.6 (±28.9) nM and 350.6 (±109) nM, respectively. These measures 

indicate that there is a significant difference between these cell lines (p < 0.05). The EC50 as 

measured with the equivalent dose for the MDA-MB-468H2B and the MDA-MB-468MDR1 lines are 

53.3 (±15.1) nM and 93.7 (±29.2) nM, respectively. These values are not statistically significant 

at p = 0.05, indicating the similarity of these lines. 

 

3.6 Discussion 

We have proposed and demonstrated the utility of equivalent dose to normalize for variable 

cell line pharmacologic properties. With the data presented here, we show that a mechanistic 

mathematical model of treatment response can succinctly summarize a range of treatments to allow 

for more precise comparison of treatment response among cell lines. Further, we have shown how 

this model provides biological insight into the biochemical drivers of treatment response. In 

summary, we have demonstrated that cancer cell populations behave in consistent, predictable 

ways and this behavior can be summarized by a parsimonious mathematical model. Just as 

anticancer therapeutics can be precisely selected using tumor genotypes, these results provide 

evidence that the dosing of those agents can be precisely tuned to match tumor properties. 

Treatment response is driven by cell-line specific pharmacologic properties. To more 

effectively advance the study of treatment response, assays that explicitly consider this variability 

are needed to more precisely identify biological drivers of treatment response. While previous 

treatment response assays provide insight in the relative sensitivity of a cell line to therapy (176), 

the proposed approach identifies and quantifies specific drivers of treatment sensitivity. Future 

work includes investigating the biological factors that influence each component of the model. 

MDR1 is only one factor that can modulate doxorubicin pharmacokinetics just as DNA-PK is only 

a single protein involved in doxorubicin pharmacodynamics. Through the approach proposed in 

this work, these pharmacologic properties can be quantified using population-level observations 
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Figure 3.13: Comparison of MDA-MB-468H2B and MDA-MB-468MDR1 cell lines using equivalent 
dose. The doxorubicin uptake with 95% CI in each cell line is shown in a. The MDA-MB-468H2B 
demonstrates increased intracellular accumulation of doxorubicin relative to the MDA-MB-
468MDR1 line. Eqs. (3.1) – (3.3) are fit to the doxorubicin uptake data, and the best fit model is 
overlaid on the data in a (smooth line). The corresponding parameters with 95% CI are shown in 
b-d. The MDA-MB-468H2B data are shown in red, and the MDA-MB-468MDR1 data are shown in 
blue. Notably, the efflux of drug from the MDA-MB-468MDR1 (kFE) line is significantly greater 
than the corresponding rate in the MDA-MB-468H2B line (p < 0.05). Treatment response is 
traditionally summarized by cell survival and plotted against applied drug concentration. The cell 
count relative to control for each cell line is shown as a function of extracellular doxorubicin 
concentration and equivalent dose in e and f, respectively. While a significant difference is 
observed when comparing these cell lines via extracellular EC50, no significant difference is 
observed when comparing this statistic derived from the equivalent dose. The equivalent dose can 
account for the differing pharmacokinetic properties to reveal similar doxorubicin 
pharmacodynamics in these cell lines. 
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of treatment response. We hypothesize that biomarker discovery approaches will be more 

successful when confounding pharmacokinetic and pharmacodynamics effects are normalized 

through the use of the equivalent dose. 

Therapies that target PK/PD pathways offer the potential to sensitize cells to genotoxic 

therapies, increasing the efficacy of therapy and allowing for lower doses of such therapeutics. 

The approach proposed in this work provides a means to quantify the respective contributions of 

each PK/PD pathway, providing mechanistic insight into treatment response. Specifically, we 

quantified the effect of TQR and NU7441 in modulating doxorubicin response. This approach 

stands in contrast to previous approaches proposed to describe synergy of therapies when used in 

combination, such as the combination index (188,189). While these methods provide insight into 

the extent to which treatments synergize, such metrics are not designed to provide guidance on 

how these therapies can be precisely applied. While therapeutic approaches intended to sensitize 

tumors to doxorubicin have demonstrated great preclinical activity, their efficacy has been limited 

in clinical trials. Specifically, negative results have been seen with TQR due to excess toxicities 

and inactivity (112,113). Similarly, DNA-PK inhibitors such as NU7441 have yet to demonstrate 

an effect clinically despite their preclinical promise(114–116). We hypothesize that the proposed 

modeling framework can be used to identify more effective strategies for dosing and assessing 

these therapeutics. In particular, the proposed modeling approach can provide precise guidance on 

the necessary dose adjustments to maximize efficacy while limiting toxicities. While realizing this 

goal will require a more complete model of treatment response (i.e., one that incorporates plasma 

pharmacokinetics and organ system toxicities), we have demonstrated the proposed model to be 

robust to various doxorubicin treatments and is general to sensitizing agents. For example, as 

demonstrated in this work, MDR1 pumps do confer resistance to doxorubicin therapy. However, 

when normalizing for the increased efflux of drug via the equivalent dose, the dose-response curve 

of the MDR1 over-expressing cell line is not significantly different from that of its parental line. 

Potentially, there is a window in which doxorubicin dose can be decreased in the presence of 

MDR1 expression treated with TQR therapy that will confer a benefit to the patient while 

theoretically decreasing off-target toxicities. The mechanistic framework used in this work, 

expanded to account for off-target toxicities, will provide precise guidelines to the optimal dose 

adjustments needed when doxorubicin is used in combination with agents that modulate 

pharmacological properties. 
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This work is limited by its use of doxorubicin, which is intrinsically fluorescent, thereby 

allowing for the uptake model to be precisely fit with experimental data. However, we posit that 

this approach need not be limited to fluorescent drugs. With appropriate experimental design, the 

approach used to estimate kFB can be leveraged to specifically quantify any of the rates proposed 

in the model. Indeed, the optimized values of doxorubicin efflux in the MDA-MB-468MDR1 line in 

Figure 3.8 are similar to those values measured by the uptake assay in Figure 3.4. Importantly, this 

work demonstrates that all treatment conditions collapse onto a single, smooth trajectory through 

parameter space as a function of equivalent dose, and this property can be leveraged to provide 

quantitative insight into the biological drivers of treatment response. While cell lines could not be 

compared without precise estimates of all model parameters, this approach can nevertheless be 

used to more precisely quantify therapeutic perturbations within a given cell line. It is 

straightforward to extend the equivalent dose as a means to more precisely quantify the effects of 

other parameters in the experimental microenvironment (e.g., how does pH or a specific nutrient 

concentration affect treatment response?). In this way, these variables can be mapped onto a 

unified treatment response framework to more efficiently advance discovery of treatment response 

biomarkers. 

While the results of this study are promising, several limitations exist in the current 

approach. This method remains to be validated in additional cell lines with other pharmacologic 

targets to address its generalizability, and the utility of the equivalent dose remains to be tested in 

vivo. Further, properties of in vitro assays not explicitly considered in the current model have been 

shown to confound observed effects. For example, local cell densities have been found to affect 

observed treatment response (190). Finally, this model is deterministic and does not consider either 

population heterogeneity or cell evolution. Despite these limiting assumptions we note the utility 

of the equivalent dose in summarizing a range of doxorubicin treatment conditions. 

 

3.7 Conclusion 

We have demonstrated that a mechanistic model of treatment response can completely 

describe doxorubicin therapy over a wide range of treatment conditions. We further provide 

demonstration of the utility of the mechanistic modeling approach, which consolidates 

contributions of pharmacokinetics and pharmacodynamics into a holistic measure of treatment 

response. This approach provides more biological insight relative to previous assays of treatment 
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response. Further, we have demonstrated how mathematical modeling can be leveraged to infer 

biological properties that are difficult to explicitly measure (e.g., kFB in the context of DNA-PK 

inhibition). It is the ultimate goal of precision cancer therapy to deliver the optimal therapy on the 

optimal schedule for the individual patient. A necessary step toward this goal is to establish a 

robust functional relationship between applied treatment and subsequent response. The present 

study demonstrates the utility of the modeling framework and provides additional evidence that 

the response to therapy is predictable. Further, it provides a generalization of our previously-

published model (177) to incorporate the effect of sensitizing agents. We hypothesize that this 

framework may even be applicable to targeted agents, which target proteins expressed at various 

levels among cell lines. Looking forward, these approaches will allow for treatment responses to 

be precisely titrated to match patient-specific and tumor-specific pharmacologic properties. 
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CHAPTER 4 
 
 

VARIABLE CELL LINE PHARMACOKINETICS CONTRIBUTE TO NON-LINEAR 
RESPONSE TO DOXORUBICIN THERAPY IN HETEROGENEOUS CELL 

POPULATIONS 
 
 
4.1 Introduction and Contribution of Study 

In this chapter, we extend the experimental-mathematical modeling approach proposed in 

Chapter 2 to study treatment response in heterogeneous cell populations. Tumors are composed of 

distinct cell clones that demonstrate a range of sensitivities to treatment. While this phenomenon 

has been observed across several tumor types, the quantitative study of treatment response in 

heterogeneous systems has been limited by the difficulty in assessing the phenotypic effects of 

cellular heterogeneity. Indeed, much of the literature on intratumoral heterogeneity relies on 

genetic expression data rather than the corresponding phenotypes to quantify heterogeneity. This 

fundamentally limits investigation into the non-linear behaviors exhibited by heterogeneous 

populations that arise due to interactions among clones. 

We study heterogeneity in the context of multi-drug resistant breast cancer. We culture the 

green fluorescent protein-tagged, multi-drug resistant protein 1 (MDR1) overexpressing cell line 

developed in Chapter 3 with its parental cell line, which expresses a red fluorescent protein-tagged 

histone H2B. In this way, each cell line can be independently tracked via fluorescence, allowing 

for the proposed mathematical model to be fit to each cell line within the heterogeneous population. 

We found that the combination of the MDR1-overexpressing cell line with its parental line is non-

linear in that model parameter values change as a function of the co-culture conditions. We propose 

and experimentally test a pharmacokinetic-based hypothesis to explain the observed nonlinearity. 

The data presented in this chapter indicate that intercellular pharmacokinetic variability should be 

considered in analyzing treatment response in heterogeneous cell populations. 

 

4.2 Abstract 

Tumors are composed of heterogeneous populations of cells that demonstrate a range of 

sensitivities to treatment. In this chapter, we develop a combined experimental-mathematical 

framework to quantify how heterogeneity impacts treatment response. Specifically, we investigate 

heterogeneity in the context of multi-drug resistant breast cancer treated with doxorubicin, a 
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standard-of-care cytotoxic therapy. We engineered a cell line to over-express the multi-drug 

resistance 1 protein (MDR1), an ATP-dependent pump that effluxes drug from the cytoplasm and 

into the extracellular space. A series of longitudinal fluorescence microscopy experiments in which 

the MDR1-overexpressing cell line is co-cultured with its parental cell line is utilized to assess the 

impact of cell population heterogeneity on response to doxorubicin therapy. These data are 

subsequently analyzed using a coupled pharmacokinetics/pharmacodynamics model to quantify 

the effect of heterogeneity. We observed that the death rate in the parental line under low-dose 

doxorubicin conditions is increased more than two-fold, from 0.64 (±0.22) × 10-2 hr-1 to 

1.46 (±0.58) × 10-2 hr-1, in the presence of the MDR1-overexpressing line. Further, we observe a 

29% increase in growth rate in the MDR1-overexpressing line as the fraction of 

MDR1-overexpressing cells at the time of seeding is decreased. We demonstrate, both 

mathematically and experimentally, that the differential pharmacokinetics of these lines contribute 

to the observed increase in death rate in the parental population. Specifically, in pharmacokinetic 

simulations, we observe an increase in accumulation of doxorubicin in the parental cell line that 

potentially contributes to the increasing death rate in co-culture experiments. Finally, under 

treatment with an MDR1 inhibitor, the death rate of the parental cell line appears independent of 

the presence of the MDR1-overexpressing line. These data indicate that intercellular 

pharmacokinetic variability should be considered in analyzing treatment response in 

heterogeneous cell populations.  

 

4.3 Introduction 

The advent of precision medicine has brought significant advances to oncology. The 

majority of these efforts have focused on the use of genetics to classify and pharmaceutically target 

cancers (2). This approach has led to a paradigm in which tumor genotypes are matched to 

appropriate treatments (3,4). While the current genetic-centric approach to cancer therapy has great 

merit in appropriately selecting therapies and identifying new pharmaceutical targets, it can 

frequently overlook a host of patient- and tumor-specific measures that influence response to 

therapy. For example, the microenvironment of the tumor alters response (6), delivery of therapy 

to tumors is variable as tumor perfusion is limited (7,8), and patient-specific pharmacokinetic 

properties vary (9,10). In addition to these factors, tumors often demonstrate significant 

intratumoral heterogeneity that evolves over time (191). Specifically, tumors are composed of cells 



 95 

that demonstrate significant differences in phenotypes, such as gene expression and sensitivity to 

anti-cancer agents (117,150). It is an ongoing challenge in clinical oncology to quantify tumor 

heterogeneity to adjust therapy choice, dose, and frequency to account for evolving tumor behavior 

in the individual patient. 

Intratumoral heterogeneity affects the response of tumors to therapy (118,192). 

Accordingly, this heterogeneity presents a significant challenge to precision medicine initiatives 

that seek to match treatment protocols to biopsy data (119). Tumor initiation and progression has 

long been described as an evolutionary process in which the tumor is composed of discrete clones 

that are selected according to their relative fitness (193). Specifically, the fitness of a single clone 

is defined by its interactions with neighboring clones and the microenvironment (194). These inter-

clonal interactions include those defined in ecology such as competition, under which clones 

compete for a limited resource, and mutualism, in which clonal interactions provide a benefit to 

each clone (118). Some of these interactions result in selective sweeps, in which a single clone 

expands to dominate a neoplasm. Alternatively, non-autonomous behavior, in which driver 

mutations in one clone confer benefit to neighboring clones, selects for heterogeneous populations 

to maximize tumor population fitness, often to the detriment of the patient. For example, in a small 

cell lung cancer model, clonal heterogeneity was found to enhance tumor proliferation and 

metastatic potential (195). 

The dynamics of cancer progression have been a target of mathematicians for 

decades (18,196). Several models have been proposed to describe the evolution of a tumor in 

response to therapy over time (197,198). However, given the technical challenges of deciphering 

cellular heterogeneity, there are few experimental systems in which treatment response in 

heterogeneous cell populations can be rigorously and mathematically studied. Of note, Frick and 

colleagues proposed the clonal fractional proliferation assay to investigate how heterogeneity 

within a cell line impacts population-level measures of treatment response (150). Additionally, 

clone tracking approaches, such as cellular barcoding (199), have been developed to monitor cell 

lineages in heterogeneous populations both in vitro and in vivo. Clone tracking techniques have 

been leveraged to understand how both genetic and non-genetic heterogeneity influence tumor 

behavior (200,201) and study intratumoral evolution (202). While these approaches provide insight 

into how heterogeneity affects treatment response, these insights have yet to be codified into a 

mechanistic mathematical model. 
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A goal of mathematical modeling is to abstract the key features of a physical system to 

succinctly describe its behavior in a series of mathematical equations. In this way, the system can 

be simulated in silico to further understand system behavior, generate specific, experimentally-

testable hypotheses, and guide experimental design. With respect to treatment response in 

heterogeneous populations, a coupled experimental-mathematical modeling approach is needed to 

parameterize proposed models and provide mechanistic insight into how heterogeneous 

populations respond to treatment (22). In this work, we develop such an approach to measure and 

predict treatment response in heterogeneous cell populations. Specifically, we systematically 

investigate this problem in triple negative breast cancer cell lines subject to standard-of-care 

doxorubicin therapy. We develop two cell lines: a doxorubicin-sensitive line and a doxorubicin 

resistant, multi-drug resistance protein 1 (MDR1)-overexpressing line. MDR1 is a surface 

membrane pump that actively effluxes drug from cells, decreasing drug accumulation within cells 

and conferring resistance to anthracyclines (including doxorubicin), taxanes, and several other 

agents (120). Notably, up to 40% of breast cancers demonstrate expression of MDR1 (203). Each 

cell line is engineered to be distinguished via fluorescence imaging, which is utilized to monitor 

cell population dynamics. We build on a coupled pharmacokinetic/pharmacodynamic model of 

doxorubicin treatment response (177) to quantify how sensitive and resistant cell lines respond to 

treatment independently and in combination. Finally, we leverage mathematical models to predict 

aspects of treatment response in heterogeneous cell populations. 

 

4.4. Materials and Methods 

4.4.1 Cell Lines 

The MDA-MB-468 triple negative breast cancer cell line was obtained through American 

Type Culture Collection (ATCC, http://www.atcc.org) and maintained in culture according to 

ATCC recommendations. The line was virally transduced to express a monomeric red fluorescence 

protein (mRFP)-tagged H2B protein as described previously(141,150). The H2BmRFP-expressing 

MDA-MB-468 cell line was again transduced to express green fluorescent protein (GFP)-tagged 

MDR1 (ABCB1 gene, Origene Technologies, Rockville, MD). Following transduction, the cell 

line was cultured in 100 nM doxorubicin for two weeks to select a doxorubicin-resistant 

phenotype. The H2BmRFP MDA-MB-468 and the double positive H2BmRFP, MDR1GFP 

MDA-MB-468 cell lines are denoted as parental and resistant, respectively. Notably, the 
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transduced fluorophores are both stably expressed, allowing for these cell lines to be distinguished 

via fluorescence imaging (RFP only for the parental line; RFP and GFP for the resistant line) 

without the addition of dyes. Sample images of each cell line are shown in Figure 4.1. 

 

4.4.2 Chemicals 

Doxorubicin is a standard-of-care cytotoxic agent used in the treatment of several 

malignancies, including triple negative breast cancer. Doxorubicin canonically induces DNA 

damage by intercalating DNA bases, stabilizing the topoisomerase II complex, and inducing DNA 

damage via free radical formation (147). Doxorubicin hydrochloride was obtained from Sigma 

Aldrich and diluted to a stock concentration of 1 mM in saline. 

Tariquidar (TQR) is a third-generation MDR1 inhibitor that non-competitively inhibits 

MDR1 function (182). TQR is leveraged to modulate doxorubicin pharmacokinetics in the 

resistant cell line. TQR was purchased from Selleckchem (Boston, MA) and dissolved to a 1 mM 

stock concentration in DMSO. Both doxorubicin and TQR were stored in 250 µL aliquots 

at -80 °C. 

 

4.4.3 Treatment Response Assays 

The response of each cell line to doxorubicin was measured using previously-published 

dose response assays (177). Briefly, cells were added to 96-well microtiter plates at 5,000 cells per 

well. Cells were treated with doxorubicin concentrations ranging from 2,500 to 10 nM and 

subsequently removed via media replacement after 24 hours. These experimental conditions were 

designed such that the areas under the concentration of doxorubicin curves overlapped those 

observed in vivo (143). These cells were imaged daily via fluorescent microscopy for up to two 

weeks following treatment with doxorubicin. For these treatment response studies, fluorescence 

microscopy images were collected using a Synentec Cellavista High End platform (SynenTec Bio 

Services, Münster, Germany) with a 20× objective and tiling of 25 images. Two co-registered 

channels of data were collected for these experiments: a red channel (Excitation: 529 nm, 

Emission: 585 nm) with 650 ms exposure to image H2BRFP and a green channel (Excitation: 470 

nm, Emission: 530 nm) with 20 ms exposure to image the MDR1GFP. At least three replicates of 

each treatment condition were collected. Media was refreshed every 3 days for the duration of each 

experiment to ensure sufficient growth conditions for surviving cells. 
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The response of both the parental and resistant lines were assessed using the above assay. 

To investigate the behavior of heterogeneous populations, the parental and resistant cell lines were 

introduced to the microtiter plate at several ratios totaling 5,000 cells per well. For example, to 

simulate a tumor composed of 20% resistant cells, 1,000 resistant cells were added to 4,000 cells 

from the parental line. The response of these co-culture conditions was measured in the same way 

as above. Several co-culture conditions were investigated, ranging from 20% to 80% (in 

increments of 20-25%) resistant cells. 

 

4.4.4 Image Processing 

Nuclei were segmented and counted in MATLAB (Natick, MA) using a previously-

described, threshold-based method to quantify cell populations (150). A classification scheme was 

developed to identify resistant cells (GFP-expressing) in heterogeneous populations. Each 

identified nucleus and its surrounding area was described by an image feature vector (described 

below), and a support vector machine (SVM) was used to classify each nucleus as belonging to 

either the parental or resistant cell line. Support vector machines seek to define a hyperplane to 

optimally separate two classes (204). The SVM was trained using image feature vectors from a 

subset of cells identified in parental-only and resistant-only experiments. In all, the training set 

consisted of 10,000 feature vectors corresponding to 5,000 parental and 5,000 resistant cells. 

Each cell identified via segmentation was described by a feature vector focusing on the 

intensity of the green channel image. For each identified nucleus, the average GFP intensity around 

the nucleus was calculated within a bounding box. Three bounding box sizes were used: 20×20, 

30×30, and 40×40 pixels. Additionally, a radial intensity histogram was computed around each 

identified nucleus. The histogram summarizes the distribution of image intensities as a function of 

radial distance from the center of the nucleus. Specifically, the histogram consisted of twenty bins, 

each containing of the average intensity over 5 pixel-wide rings with increasing radii centered on 

the nucleus. Finally, the distance from the nucleus to peak GFP intensity was calculated. We 

hypothesized that these features would capture the brightness patterns of the resistant cells, which 

express the MDR1GFP on the cell membrane (see Figure 4.1 for examples).  

A 10-fold cross validation approach was used to train and tune the SVM. To classify images 

in the test set (i.e., cells in the co-cultured wells), the above features were calculated for each 
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Figure 4.1: Sample image time series of parental and resistant cell lines and illustration of the 
counting and classification scheme. Both the parental and resistant cell lines are engineered to 
express a nuclear H2BmRFP label (left column). The resistant line additionally expresses a GFP-
tagged MDR1 protein (middle column). Note that these fluorophores are stably expressed as the 
images show the same area over six days. The nuclear image (left column) is used for cell 
segmentation and counting. A SVM classifier is used to classify each detected cell as parental or 
resistant in co-culture conditions using the GFP image (middle column). A sample segmentation 
and classification result is shown in the right column. In this example, the resistant cells are colored 
blue and the parental line is shown in red. The classifier is able to accurately identify each cell 
line. 
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identified cell and passed to the trained SVM. In this way, the image processing pipeline outputs 

the cell counts of both the parental and resistant lines.  

 

4.4.5 Treatment Response Model 

We previously proposed and validated a coupled pharmacokinetic/pharmacodynamic 

model of doxorubicin treatment response in vitro (177). The model incorporates measured 

doxorubicin pharmacokinetic and pharmacodynamic rates and allows for prediction of treatment 

response to a wide range of treatment conditions on a cell-line specific basis. We now extend this 

model to account for the two cell populations present in the current experimental system. A 

compartment model is used to describe doxorubicin pharmacokinetics: 
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where CE (t),  CF,c (t), and CB,c (t) are the concentrations of doxorubicin in the extracellular, free, 

and bound compartments, respectively, in cell line c (parental, P, or resistant, R) at time t. Both 

the free and bound compartments are defined to share the same physical space (intracellular). The 

free compartment represents drug that has diffused into the cell, while the bound compartment 

represents drug that has bound to DNA. The kij,c parameters are rate constants that describe the 

movement of doxorubicin between each of these compartments in each cell line; for example, kFE,R 

describes the rate of drug transfer from the free, intracellular compartment of the resistant cell line 

to the extracellular compartment. Similar definitions apply to kEF,R, kFB,R, kEF,P, kFE,P, and kFB,P. 



 101 

The volumes of the intracellular and extracellular compartments are denoted with vI,c and vE,c, 

respectively. 

The pharmacodynamics model is similarly extended from that presented in previous 

work (177) to include both parental and resistant cells. Specifically, we define the temporal change 

of a population consisting of a specified fraction of resistant cells, f, to a delivered doxorubicin 

dose, D, for all time, t as follows: 
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where NT is the total population size, NP is the number of parental cells, and NR is the number of 

resistant cells. kp,c and kd,c are the proliferation and dose-specific death rates for cell line c, 

respectively. θ is the dose-specific carrying capacity describing the maximum number of cells that 

can be supported by the experimental system. Dose, D, is defined as the maximum bound 

concentration of drug following treatment and is calculated by simulating the pharmacokinetics 

model using an experimentally-defined extracellular doxorubicin concentration timecourse. Of 

note, all rates are allowed to vary as a function of co-culture condition, defined by f. The death 

rate, kd,c, for each population can assume either of the following forms: 
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Eq. (4.9) assumes an immediate transition to a constant post-treatment death rate, kd,a. Eq. (4.10) 

assumes a smooth induction to and recovery from a maximal death rate, kd,b. r describes the rate 

at which treatment response is induced. A weighted averaging approach is used to combine these 

two models (i.e., Eqs. (4.6) – (4.8) with the death rate in Eq. (4.9) and Eqs. (4.6) – (4.8) with the 
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death rate in Eq. (4.10) into a single best-fit model. Additional information on the model can be 

found in previous work (177). 

 

4.4.6 Treatment Response Model Fitting 

The two-species pharmacodynamics model, Eqs. (4.6) – (4.8), is fit to data by minimizing 

the following objective function, G (x):  
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where x is the set of parameters to be estimated, Yt,c is the measured cell counts at time t for cell 

line c, ,t̂ cY  is the model-estimated cell counts at time t for cell line c when the model is evaluated 

with parameters x, and ti and tf are the initial and final timepoints respectively. c represents the 

parental cell line (P), resistant cell line (R), or total cell count (T). Specifically, the proliferation 

rate (kp,R, kp,P) and all dose-response parameters (kd,R, kd,P) for each cell line are optimized to fit 

the data. Data from each co-culture and treatment condition are fit independently using a nonlinear 

least squares optimization routine implemented in MATLAB (Natick, MA). Model fits are 

compared to the measured response for each cell line, and the mean percent error across all 

timepoints is reported for the best fit model. 

In the optimization approach, the model is initialized with the cell counts at the timepoint 

following treatment for each individual replicate, and all subsequent timepoints are considered in 

the model fit. To avoid local minima, the fitting process is initialized with 200 sets of parameter 

estimates selected randomly from expected distributions for each parameter. kd values are 

initialized by sampling a uniform distribution [-1kp, 5kp]. r is bounded within [0.001, 0.05] hr-1. 

Further, θ is bounded between [0.7θ, 1.2θ], where θ is the carrying capacity observed in the control 

data for each cell line. 

To ensure the stability and accuracy of the optimization routine for each of these studies, 

simulations were conducted with perfectly known population compositions and treatment response 

parameters. Gaussian noise with zero mean and a standard deviation of 5% of each cell lines’ count 

were added to the simulated data to reflect the accuracy of the classification scheme. The model 

optimization routine was run on these simulated timecourses. The model parameter fits derived 
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from these simulated datasets are compared to their specified values, and R2 statistics comparing 

simulated to fit parameters are reported. 

 

Table 4.1: Properties for pharmacokinetic simulation 
Parameter Value Source 

vE 250 µL Experimentally-defined extracellular volume 
vI 0.005 µL 10,000 cells × 5e-7 µL (estimated volume per cell) 

kEF [0.005, 0.05] hr-1 Jackson (2003) (159) 
kFE,P 0.05 hr-1 Experimentally derived (Figure 3.13) 
kFE,R [0.05, 0.15] hr-1 Experimentally derived (Figure 3.13) 

kFB,R ,kFB,P 0.015 hr-1 Experimentally derived (Figure 3.13) 
 
 

4.4.7 Simulation of Pharmacokinetics in Heterogeneous Cell Populations 

We hypothesize that there will be a statistically significant increase in response of the 

parental cell line to doxorubicin in the presence of resistant cells and that this increase is due to an 

increased accumulation of drug in the parental cells secondary to efflux of drug from resistant 

cells. To explore this hypothesis, we simulate the pharmacokinetics model to assess the 

accumulation of drug in the parental cells (CB,P) over a range of co-culture conditions. For these 

simulations, the parental and resistant cell lines are assumed to have identical pharmacokinetic 

parameters, except for the doxorubicin efflux parameter (kFE,R and kFE,P) (measurements of kEF and 

kFB in these cell lines are indeed similar (see Figure 3.13)). To assess the effect of the efflux rate 

on the accumulation of drug in the parental cell line, a range of kFE,R values were simulated while 

holding kFE,P constant. To simulate a range of co-culture conditions, the total intracellular volume 

(vI,R + vI,P) was held constant while altering the relative volumes of the intracellular compartment 

of the resistant and parental cell lines. Notably, proportional changes in kEF,P and kEF,R were made 

to reflect the changing volumes of the intracellular compartments. Doxorubicin primarily diffuses 

into cells (205), and diffusion, described with the kEF term, is proportional to membrane 

permeability and surface area. As we assume the cell surface area per unit volume for each cell 

line is constant in all co-culture conditions, the changing intracellular volumes require 

corresponding changes in cell surface areas. Specifically, for a simulation consisting of a fraction 

f of resistant cells and influx rate kEF, ( ), 1EF P EFk f k= −  and ,EF R EFk f k= . This adjustment 

ensures that for each cell line the accumulation of drug per unit cell volume is constant in all co-
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culture conditions. A complete list of parameter values is shown in Table 4.1. While several of the 

parameters are derived from the measurements reported in Chapter 3, we rely on literature 

estimates for kEF (159) as the image-based method used in Chapter 3 underestimates the magnitude 

of doxorubicin accumulation within cells relative to previous studies (144,205). 

 
4.4.8 Modulation of Pharmacokinetics in Heterogeneous Cell Populations 

To test experimentally the hypothesis that the resistant cells cause an increase of 

doxorubicin accumulation in the parental cells and, therefore, increased death rate, the efflux of 

drug via MDR1 in the resistant cell line is inhibited with TQR. By inhibiting the effect of this 

pump, we hypothesize that the death rate of the parental population to doxorubicin should be 

independent of the presence of resistant cells. The treatment response assay described in 

Section 4.4.3 is repeated with 1 µM of TQR applied one hour prior to doxorubicin therapy and 

throughout the course of the assay. Notably, low concentrations of doxorubicin (50 and 100 nM) 

are used to avoid saturating the death rate. These data are fit with the pharmacodynamics model, 

and the hypothesis is assessed by measuring the change in the death rate of the parental population 

(kd,P) as a function of the percentage of resistant cells at the time of seeding. 

 

4.5. Results 

4.5.1 Cell Counting Results 

A representative image set and corresponding segmentation and classification results are 

shown in Figure 4.1. The tuned SVM correctly classified 98.5% of cells in the training set. In a 

separate image set consisting of experimental replicates with exclusively parental or resistant cells 

with over 16,000 parental and 12,000 resistant cells, the classifier achieved a sensitivity of 0.942 

with a specificity 0.994.  

 

4.5.2 Simulation Results  

The treatment response model (i.e., Eqs. (4.6) – (4.8)) was simulated at 11 mixture ratios, 

ranging from 0% to 100% resistant cells in 10% increments. For these simulations, the 

proliferation rates of the parental and resistant lines were fixed at 0.02 hr-1 and 0.015 hr-1, 

respectively. Simulations were run with eight treatment conditions assuming either the death rate  
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Figure 4.2: Optimization routine accurately identifies simulated death rates. Eqs. (4.6) – (4.8) were 
simulated over a range of co-culture conditions using the death model assumed in Eq. (4.9). The 
death rate of each cell line was estimated using the optimization routine in Section 4.4.6. Model 
estimates and 95% confidence intervals are shown for the parental (left) and resistant (right) cell 
lines. The legends in each figure panel denote the percentage of resistant cells present at the 
beginning of the simulation. The death rate for each cell line can be accurately recovered. 
 
 

 
 
 
Figure 4.3: Optimization routine accurately identifies simulated proliferation rates. Eqs. (4.6) – 
(4.8) were simulated over a range of co-culture conditions. The proliferation rate of each cell line 
was estimated using the optimization routine in Section 4.4.6. Model estimates and 95% 
confidence intervals are shown for the parental (red) and resistant (blue) cell lines. For these 
simulations, the proliferation rate of the parental and resistant lines were fixed at 0.02 hr-1 and 
0.015 hr-1, respectively. The proliferation rate for each cell line can be accurately recovered. 
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Figure 4.4: Optimization routine accurately identifies simulated death rates. Eqs. (4.6) – (4.8) were 
simulated over a range of co-culture conditions using the death model assumed in Eq. (4.10). The 
death rate of each cell line was estimated using the optimization routine in Section 4.4.6. Model 
estimates and 95% confidence intervals are shown for the parental (left) and resistant (right) cell 
lines. For these simulations, r was fixed to 0.02 hr-1 for both cell lines to avoid the variability 
observed in kd,b at low values of r previously reported (177). The legends in each figure panel 
denote the percentage of resistant cells present at the beginning of the simulation. The death rate 
for each cell line can be accurately recovered. 
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in Eq. (4.9) or Eq. (4.10). Additionally, r (Eq. (4.10)) was fixed to 0.02 hr-1 for both cell lines to 

avoid the variability observed in kd,b at low values of r previously reported (177). The optimization 

routine outlined in Section 4.4.6 was used to estimate model parameters from the simulated data. 

The recovered parameter values with corresponding 95% confidence intervals are compared to 

their simulated values in Figures 4.2 – 4.4. The optimization framework successfully returned 

model parameters with R2 > 0.94 for all model parameters. 

 

4.5.3 Model Fits 

The treatment response model (i.e., Eqs. (4.6) - (4.8)) was fit to each co-culture and 

treatment condition. Model fits are superimposed on the total population cell counts in Figure 4.5. 

The model was able to accurately capture the total cell count over a wide range of co-culture and 

treatment conditions with a mean percent error of 10.1% across all data points. Additionally, the 

model was able to describe the behavior of each cell line in co-cultured conditions. The cell counts 

for the resistant and parental cell lines under a range of co-culture conditions at a representative 

doxorubicin treatment are shown in Figure 4.6. The best fit model is overlaid on these data. The 

mean percent errors over all timepoints of the model fits to the parental and resistant lines are 

17.2% and 8.9%, respectively. Of note, the high error rates of the parental line are concentrated in 

conditions of high cell death with relatively low cell counts. 

Prior to treatment with doxorubicin, the parental and resistant cell lines displayed 

exponential growth in monoculture with proliferation rates (kp) of 2.07 (±0.08) × 10-2 hr-1 and 

1.72 (±0.04) × 10-2 hr-1, respectively (the bounds here and below correspond to the 95% confidence 

interval of the parameter estimates). The proliferation rate of the resistant cell line increases as the 

percent of resistant cells at the time of seeding decreases. Conversely, the proliferation rate of the 

parental cell line decreases as the percent of resistant cells increases. The proliferation rate of each 

species as a function of the percentage of resistant cells is shown in Figure 4.7. For example, in an 

untreated control in the 75% resistant culture, the parental proliferation rate decreases 30% from 

its monoculture rate to 1.45 (±0.07) ×10-2 hr-1. In the untreated 25% resistant culture control, the 

proliferation rate of the resistant line increases 29% from its monoculture rate to 

2.22 (±0.07) × 10-2 hr-1. The mean percent error of the model fits in these control conditions were 

9.1% and 14.9% for the resistant and parental lines, respectively. 
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Figure 4.5: Treatment response in heterogeneous cell populations and pharmacodynamic model 
fits. The total cell counts (sum of resistant and parental cells) over time and corresponding 95% 
confidence intervals are shown for in a representative set of doxorubicin treatments and co-culture 
conditions. These data are fit by Eqs. (4.6) – (4.8), and the model fit is overlaid on the data (smooth 
lines in all panels). The parental line is more sensitive to doxorubicin therapy relative to the 
resistant line. Complete population regression of the parental line is seen for doxorubicin 
treatments ≥ 500 nM (a). The resistant cell line continues to proliferate under 500 nM doxorubicin 
(f). The proposed model can describe the observed pharmacodynamics. 
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Figure 4.6: Model fits for each cell line in several co-culture conditions following treatment with 
100 nM of doxorubicin. In the current system, each cell line can be quantified throughout the 
course of the experiment. The cell counts of the parental (red) and resistant (blue) lines with 95% 
confidence intervals are shown following treatment with 100 nM doxorubicin. The total cell counts 
with 95% confidence intervals are shown in black. Eqs. (4.6) – (4.8) are fit to these data, and the 
best-fit model is overlaid on the observed cell counts (smooth line in all panels). While the parental 
line demonstrates continued positive proliferation in monoculture (a), the net proliferation rate of 
the parental line decreases with increasing fractions of resistant cells (b-e). 
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Figure 4.7: Proliferation rate of each cell line changes as a function of co-culture condition. The 
proliferation rate of each cell line and corresponding 95% confidence interval are estimated from 
control experiments (no doxorubicin). These rates are shown as a function of the percentage of 
resistant cells at the time of seeding. The proliferation rate of the resistant cell line increases as the 
fraction of resistant cells decreases. Conversely, the proliferation rate of the parental cell line 
decreases as the fraction of resistant cells increases. 
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Figure 4.8: Net proliferation rate of the parental (left) and resistant (right) cell lines as a function 
of the number of resistant cells present at the time of seeding. Eqs. (4.6) – (4.8) were fit to each 
cell line in each co-culture and treatment condition. The net proliferation rate (kp - kd,a) with 
corresponding 95% confidence intervals under 100 and 500 nM of doxorubicin is shown for each 
cell line as a function of the percentage of resistant cells. Sensitivity to doxorubicin in the parental 
cell line increases with increasing fractions of resistant cells as demonstrated by the significant 
decrease in net proliferation rate under 100 nM of treatment with increasing fractions of resistant 
cells(left). The net proliferation rate of the parental line appears saturated at 
approximately -0.5 × 10-2 hr-1 under treatment with 500 nM doxorubicin. Conversely, the net 
proliferation rate of the resistant line increases with decreasing numbers of resistant cells (right). 
This indicates that the increase in proliferation rate in the resistant line more than offsets the effects 
of low-dose doxorubicin. 
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Table 4.2: Model parameter fits for parental cell line (error represents 95% confidence interval) 
 

  kd,a (×10-2 hr-1) kd,b (×10-2 hr-1) r (×10-2 hr-1) 
 Concentration 

(nM) 0 100 500 2500 0 100 500 2500 0 100 500 2500 

Pa
re

nt
al

:R
es

is
ta

nt
 

100:0 -0.03 
(±0.55) 

0.64 
(±0.22) 

2.11 
(±0.23) 

1.88 
(±0.31) 

-0.28 
(±5.35) 

0.98 
(±0.65) 

2.57 
(±0.49) 

2.15 
(±0.11) 

5.00 
(±64.2) 

0.58 
(±0.36) 

0.86 
(±0.12) 

0.58 
(±0.07) 

80:20 -0.36 
(±0.44) 

0.63 
(±0.25) 

2.07 
(±0.30) 

1.66 
(±0.31) 

-0.98 
(±1.51) 

2.07 
(±1.65) 

2.44 
(±0.27) 

1.92 
(±0.25) 

4.53 
(±6.38) 

0.15 
(±0.24) 

0.87 
(±0.03) 

0.54 
(±0.05) 

60:40 -0.37 
(±0.72) 

0.69 
(±0.37) 

2.08 
(±0.35) 

1.62 
(±0.38) 

-0.99 
(±3.41) 

2.91 
(±0.44) 

2.42 
(±0.28) 

1.98 
(±0.31) 

4.45 
(±13.6) 

0.10 
(±1.28) 

0.62 
(±0.02) 

0.46 
(±0.06) 

40:60 -0.32 
(±0.86) 

1.13 
(±0.34) 

1.87 
(±0.32) 

1.64 
(±0.37) 

-1.12 
(±3.53) 

3.62 
(±0.16) 

2.31 
(±0.31) 

1.89 
(±0.32) 

5.00 
(±14.5) 

0.10 
(±0.82) 

0.72 
(±0.03) 

0.51 
(±0.05) 

20:80 -0.10 
(±1.30) 

1.35 
(±0.54) 

1.87 
(±0.56) 

1.39 
(±0.47) 

-1.02 
(±3.62) 

4.20 
(±0.20) 

2.26 
(±0.48) 

1.63 
(±0.50) 

5.00 
(±18.5) 

0.10 
(±1.01) 

0.48 
(±0.04) 

0.54 
(±0.07) 

 
 
Table 4.3: Model parameter fits for resistant cell line (error represents 95% confidence interval) 
 

  kd,a (×10-2 hr-1) kd,b (×10-2 hr-1) r (×10-2 hr-1) 

 Concentration 
(nM) 0 100 500 2500 0 100 500 2500 0 100 500 2500 

Pa
re

nt
al

:R
es

is
ta

nt
 

80:20 -0.51 
(±0.87) 

-0.17 
(±0.45) 

0.44 
(±0.38) 

0.75 
(±0.57) 

-1.39 
(±2.03) 

1.82 
(±4.34) 

0.51 
(±0.41) 

1.10 
(±1.41) 

0.19 
(±5.40) 

0.10 
(±1.44) 

0.62 
(±1.13) 

0.33 
(±0.35) 

60:40 -0.52 
(±0.91) 

-0.22 
(±0.47) 

0.59 
(±0.36) 

0.89 
(±0.57) 

-1.72 
(±3.42) 

1.82 
(±3.27) 

0.68 
(±0.40) 

1.06 
(±0.61) 

0.16 
(±4.75) 

0.10 
(±1.37) 

0.56 
(±0.72) 

0.45 
(±0.43) 

40:60 -0.37 
(±0.73) 

-0.20 
(±0.53) 

0.54 
(±0.35) 

0.65 
(±0.51) 

-1.61 
(±3.68) 

1.60 
(±2.14) 

0.60 
(±0.66) 

1.03 
(±0.85) 

0.10 
(±3.58) 

0.10 
(±1.38) 

2.05 
(±1.34) 

0.34 
(±0.59) 

20:80 -0.10 
(±0.60) 

0.16 
(±0.61) 

0.49 
(±0.48) 

0.77 
(±0.71) 

-0.94 
(±2.22) 

0.88 
(±1.37) 

0.63 
(±0.72) 

0.97 
(±0.83) 

0.10 
(±6.69) 

0.11 
(±3.03) 

1.24 
(±1.21) 

0.39 
(±0.52) 

0:100 0.00 
(±0.37) 

0.31 
(±0.20) 

0.25 
(±0.20) 

0.69 
(±0.40) 

0.05 
(±5.08) 

1.50 
(±2.84) 

0.36 
(±0.17) 

0.88 
(±0.31) 

4.98 
(±292) 

5.00 
(±5.59) 

1.39 
(±1.78) 

0.39 
(±0.49) 
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Each cell line demonstrated a concentration-dependent response to doxorubicin treatment. 

The parameter fits with 95% confidence intervals from a representative experimental replicate are 

shown in Tables 4.2 and 4.3 for the parental and resistant lines, respectively. The death rate of the 

parental cell line (kd,P)appears to saturate to approximately 2.0 × 10-2 hr-1 at high doxorubicin doses 

(≥ 500 nM) (this is the death rate assumed in Eq. (4.9)). A similar trend was noted in the death rate 

derived from Eq. (4.10) (see Tables 4.2 and 4.3)). Notably, the death rate in the parental cells for 

the 100 nM treatment condition increases with the number of resistant cells present in the 

population. In the parental-only condition, the death rate is 0.64 (±0.22) × 10-2 hr-1. This rate 

increases to 1.46 (±0.58) × 10-2 hr-1 when the population consists of 80% resistant cells. Increasing 

death rate in the parental population with increasing numbers of resistant cells was noted in all 

experimental replicates (Figure 4.10a). The resistant cell line demonstrates decreased sensitivity 

to doxorubicin therapy relative to the parental line. For example, the death rate in the resistant line 

under 100 nM treatment (0.31 (±0.20) × 10-2 hr-1) is half that observed in the parental line.  

In Figure 4.8, the net proliferation rate (kp - kd) for each species is shown as a function of 

the percentage of resistant cells at the time of seeding. Notably, the increase in the death rate in 

the parental cell line is compounded by the decreasing proliferation rate, creating a synergistic 

effect leading to a significantly decreased net proliferation rate with increasing fractions of 

resistant cells. Further, the increased proliferation rate in the resistant line is greater than the effect 

of doxorubicin, causing an increasing net proliferation rate with decreasing fractions of resistant 

cells. 

 

4.5.4 PK Simulation 

Based on the results of section 4.5.3, it is clear that the presence of resistant cells increases 

the sensitivity of parental cells to treatment. Simulation of the pharmacokinetic model (i.e., Eqs. 

(4.1) – (4.5)) predicts an increase in drug accumulation (up to 15%) in the parental cell line (CB,P) 

in the presence of resistant cells. Simulation results are shown in Figure 4.9. As the accumulation 

of doxorubicin is proportional to therapy response (177), these simulations are consistent with the 

decreased net proliferation rate of the parental line with increasing fractions of resistant cells seen 

in Figure 4.8 and Table 4.2. A synergistic effect of the efflux rate of the resistant cells (kFE,R) and 

the fraction of resistant cells present in the co-culture condition in increasing the accumulation of 

drug in the parental line is observed. The magnitude of this effect is proportional to kEF. 
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Figure 4.9: Pharmacokinetics model predicts increased doxorubicin accumulation in the parental 
cell line with increasing efflux rate in the resistant line (kFE,R) and increasing fractions of resistant 
cells. The pharmacokinetics model was simulated to assess the effect of kFE,R and the fraction of 
resistant cells on the accumulation of drug in the parental cells (CB,P). In these simulations, the 
drug binding rate was equal for each cell line (kFB,R = kFB,P), and the diffusion rate into each cell 
line was equal (kEF,R = kEF,P = kEF). The fraction of resistant cells in the population was varied 
between 0 (entirely parental) and 0.95. The efflux rate for the resistant cells (kFE,R) was varied 
between 0.05 and 0.15 hr-1. The efflux rate for the parental population (kFE,P) was fixed at 0.05 hr-1. 
All other parameter values are specified in Table 4.1. The drug accumulation in the parental cell 
line (CB,P) is normalized to the minimum simulated value in each plot to show the percent increase 
in drug accumulation as the fraction of resistant cells, kEF, and kFE,R are varied. As the percentage 
of resistant cells increase, there is an increase in the drug accumulation in parental cells. This 
accumulation is further increased as kFE,R increases. The magnitude of this effect is proportional to 
the simulated value of kEF.  
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Additionally, no difference in CB,P is observed when kFE,R = kFE,P. This suggests that the response 

of the parental line to therapy would be independent of the presence of resistant cells if kFE,R were 

decreased to match kFE,P. 

 

4.5.5 MDR1 Inhibition 

The co-culture treatment response experiments were repeated with addition of 1 µM TQR, 

and the treatment response model was fit to the resulting timecourses. The mean percent errors 

over all timepoints and treatment conditions of the model fits to the parental and resistant lines in 

these experiments are 6.5% and 5.9%, respectively. The death rate of the resistant cell line 

increased with the addition of TQR. For example, under treatment with 100 nM doxorubicin, the 

death rate of the resistant line increased an order of magnitude from 0.093 (±0.084) × 10-2 hr-1 to 

2.00 (±0.87) × 10-2 hr-1 with addition of TQR. Contrary to the previous observation that the death 

rate of the parental line increases with increasing numbers of resistant cells, the death rate of the 

parental line appears constant across co-culture conditions with addition of TQR. These results are 

illustrated in Figure 4.10. This observation is consistent with the prediction of the PK model. By 

equalizing the efflux rate of the two cell lines through use of TQR, the death rate of the parental 

cell population appears independent of the presence of resistant cells. Of note, while treatment 

with TQR appeared to restore the linearity of the death rate with respect to co-culture condition in 

the parental population, the proliferation rate of each cell line still varied with respect to co-culture 

condition. This is illustrated in Figure 4.11. Again, the model described these control data well 

with mean percent errors of 9.7% and 7.0% for the parental and resistant lines, respectively. 

 

4.6 Discussion 

We have established an experimental-mathematical modeling framework to investigate the 

response of heterogeneous cell populations to doxorubicin therapy. While the treatment response 

of a cell line in monoculture can be described by a parsimonious mathematical model, the treatment 

response of heterogeneous cell populations is non-linear in that model parameters change as a 

function of population composition. Specifically, over a range of clinically-relevant doses, the 

death rate of parental cells is increased in the presence of resistant cells. Further, the proliferation 

rate of the resistant cell line increases with decreasing fractions of resistant cells, and the 

proliferation rate of the parental cells is depressed with increasing fractions of resistant cells. We   
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Figure 4.10: The death rate in the parental population is constant as a function of co-culture 
condition when the MDR1 pump is inhibited. The death rate in the parental cell line appears to 
increase with increasing percentages of resistant cells (a). The resistant cell line is relatively 
insensitive to doxorubicin treatment as demonstrated by the small death rates in b. The assay is 
repeated with the addition of 1 µM TQR, which inhibits MDR1 function. The addition of TQR 
reverses the trend observed in a, and the response to therapy in the parental line appears constant 
as a function of co-culture condition (c). The death rate of the resistant cell line increases 
significantly with addition of TQR (d). 
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Figure 4.11: Proliferation rates of parental and resistant cell lines under treatment with TQR. 
Proliferation rates were estimated from control (i.e., no doxorubicin) treatment response studies 
with 1 µM TQR. The proliferation rate of the parental line decreases with increasing fractions of 
resistant cells. Conversely, the proliferation rate of the resistant cells increases slightly as the 
fraction of resistant cells decreases. This is consistent with the observation in Figure 4.7.  
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have proposed and validated a pharmacokinetics-based mechanism contributing to the 

nonlinearities in the observed death rates. We believe this framework to be a useful tool to 

systematically investigate the behavior of heterogeneous systems and to characterize quantitatively 

how heterogeneity affects therapy response. 

Both the growth and death rates of each cell line are altered in co-culture conditions. The 

MDR1-overexpressing cell line demonstrates increased resistance to doxorubicin treatment 

relative to the parental cell line, and this difference is accentuated in co-culture conditions. When 

grown together, the resistant line grows more quickly, and the parental cell line is further sensitized 

to doxorubicin therapy. Taken together, we posit these observations largely agree with the ligand-

capture hypothesis of cell competition (206,207). Briefly, the ligand-capture hypothesis assumes: 

1) the ligand is in limiting supply; 2) the ligand is a survival signal; and 3) partial withdrawal of 

the ligand triggers apoptosis. 

The differing proliferation rates could be explained through competition for growth 

nutrients. Specifically, the MDR1 pump is ATP-dependent (208), and in other MDR1-positive cell 

lines, glucose uptake and ATP consumption are significantly increased relative to MDR1-negative 

cell lines (209,210). Potentially, with transduction of MDR1, the resistant cells in this work evolve 

an improved ability to capture nutrients from the environment to support the metabolic demands 

of the pump. The enhanced growth rate of resistant cells seen at low fractions of resistant cells 

may arise due to a decrease in competition for nutrients with fewer resistant cells. Conversely, the 

decreasing proliferation rate of the parental cells in the presence of resistant cells may arise due to 

the increased nutrient consumption by the resistant cells. Indeed, ATP generation mechanisms 

have been shown as a basis for cellular competition (211). The proposed model can be extended 

to describe these effects through inclusion of metabolic rates into the proliferation rate. Just as the 

death rate was defined to account for varying drug concentrations (Eqs. (4.9) – (4.10)), the 

proliferation rate can be defined to include the availability of nutrients, similar to the model 

proposed by Silva and colleagues (210). 

The enhanced death rate of the parental line requires a slight modification of the ligand-

capture hypothesis, which we denote as the ligand-rejection hypothesis. Specifically, we assume 

again that the ligand (in this case drug) is in limiting supply. However, the ligand is a cell death 

signal, and addition of ligand induces death. Cells that are able to reject or metabolize ligand will 

out-compete those that avidly consume the ligand. This is indeed the behavior predicted by 
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simulations of the extended pharmacokinetic model in Figure 4.9 and validated with the 

experiments presented in Figure 4.10. We hypothesize that this pharmacokinetic-based mechanism 

may also contribute to responses to targeted anti-cancer agents. 

We proposed and validated a mechanism that contributes to the increasing death rates in 

the parental cell line in co-culture conditions. Notably, simulation of the pharmacokinetic model 

(Eqs. (4.1) – (4.5)) suggested that increasing the efflux rate of the resistant cell line increased drug 

accumulation within the parental cells. This increased accumulation would, in turn, lead to 

increased death rates of the parental line in co-culture conditions. These simulations generated a 

specific hypothesis (i.e., inhibition of the MDR1 pump could restore the linearity of the death rate) 

that could be tested experimentally. Indeed, when MDR1 function is inhibited with TQR, the death 

rate of the parental cell line appears constant across co-culture conditions (Figure 4.10c). These 

data indicate that variable cellular pharmacokinetics contribute to the nonlinear death rate of 

parental cells. We note that these data do not exclude alternative hypotheses explaining the 

observed phenotype. Specifically, additional intercellular interactions (e.g., cell-cell signaling, 

extrusion of toxic metabolites from the resistant line via MDR1, or impaired DNA repair 

mechanisms in the parental line secondary to nutrient depletion) may contribute to the observed 

increase in death rate. Indeed, these additional interactions may be necessary as the increase in 

drug accumulation predicted by the PK model is relatively small compared to the fractional 

increase in death rate over co-culture conditions.  

In this work, we proposed a biophysical mathematical model that describes the temporal 

dynamics of clones interacting within a heterogeneous population. Such interactions are inherent 

in heterogeneous tumors and form the basis of tumor evolution (212,213). Mathematical modeling 

and evolutionary game theory approaches have been used to study the co-culture-dependent 

behavior observed in the current experiments (214). For example, in a mouse xenograft model in 

which non-autonomous behaviors were observed, a mathematical framework was proposed to 

quantify dynamic interactions among individual clones (201). While such modeling approaches 

are a powerful tool to identify the magnitude of clonal interactions, the models are not designed to 

provide mechanistic insight into the interactions they describe. Indeed, it is not readily apparent 

how such methods can leverage the genetic data generally used to assess tumor heterogeneity to 

predict phenotypic clonal interactions. This work provides a framework that can be used to derive 

mechanistic, biophysical models describing clonal interactions. Specifically, we posit the proposed 
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high-throughput experimental-modeling platform can be leveraged to elucidate the biophysical 

basis of the interactions that underlie the emerging phenotypes observed in heterogeneous 

populations. In this way, these models can be used to generate precise hypotheses as to optimal 

means to improve treatment response in cancer (215).  

The current approach has several limitations. While the variability in cell line 

pharmacokinetics is significant in predicting treatment response in the engineered cell populations 

in this work, these observations remain to be tested in additional cell lines and in vivo. Further, the 

proposed pharmacokinetic interaction does not preclude the presence of additional inter-clonal 

interactions that alter treatment response. For example, cells can secrete factors to stimulate growth 

and transfer resistance to previously-sensitive cells (216,217). The spatial dependency of the clonal 

interactions observed in this study remains to be investigated. Indeed, local cell densities have 

been found to affect treatment response in vitro (190). Finally, the hypothesized metabolism-based 

competition driving differing proliferation rates in co-culture conditions requires further 

exploration. However, with these limitations come opportunities to iteratively increase the 

complexity of the experimental-modeling framework to quantify the magnitude of each of the 

above effects. Indeed, a major goal of mathematical modeling in cancer is to build models that 

distill the relevant biology into a parsimonious set of equations. The framework proposed in this 

work provides a rich platform from which these equations can be constructed. 

 

4.7 Conclusion 

In the in vivo setting, the genetic composition of a tumor is unknown a priori. While biopsy 

and imaging data provide insight into the dominant genetic and phenotypic behavior of the tumor, 

these response measurements are often limited to coarse measurements of the bulk tumor. These 

measures, in isolation, are unable to resolve and quantitatively characterize small subpopulations 

of tumor cells. Additionally, these data are unable to predict treatment response, limiting clinicians 

to use standardized dosing regimens, despite the known inter- and intra-patient heterogeneity in 

several solid tumor types. While it is our ultimate goal to resolve the phenotypes of several 

parameters using bulk data measurements, we must identify first principles that govern the 

behavior of tumor cells in response to therapy. In this work, we provide quantitative evidence that 

intratumoral heterogeneity significantly impacts treatment response. Additionally, we posit that 

these changes arising from heterogeneity are predictable through use of mathematical models of 
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pharmacokinetics and pharmacodynamics. Through discovery of these first principles that govern 

treatment response, we move closer to 1) estimating tumor heterogeneity from population-level 

data and 2) realizing the ultimate goal of precision medicine: delivery of the optimal therapy at the 

optimal dose on the optimal schedule.  
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CHAPTER 5 
 
 

SYNOPSIS AND FUTURE DIRECTIONS 
 
 

5.1 Dissertation Summary 

Mathematical models of tumor growth and treatment response can be leveraged to guide 

and optimize patient therapies. A growing and maturing literature exists on the development of 

such models (18,22,218). Formulation of these models must strike a balance between complexity 

and applicability. As we reviewed in Chapter 1, simple models of tumor growth, such as logistic 

or Gompertz models, are easily parameterized with experimental data and can describe tumor 

volume changes observed experimentally and clinically (39,219,220). Indeed, Norton and Simon’s 

dose-dense hypothesis was constructed using a Gompertz model of tumor growth (40). However, 

these models often fail to capture the spatial, temporal, and biological heterogeneity observed in 

tumor development. Models structured to account for such heterogeneity are more complex, 

characterized by numerous parameters that are difficult to measure with the requisite spatial or 

temporal resolution (221–223). Often, authors must draw parameter values from the literature or 

simply estimate them (19). While these models have potential to investigate fundamental laws of 

tumor growth and inform experiments to probe tumor behavior, we currently lack the framework 

to use these models “off the shelf” to make predictions for a specific experimental system. This 

limits their potential translation to a clinical population. 

It is our ultimate goal to realize the utility of mathematical models in guiding clinical 

decision making. With this ultimate objective, this Dissertation is submitted having established a 

robust mathematical model of doxorubicin treatment response in an in vitro model of triple 

negative breast cancer. We posit the experimental-modeling framework presented in this 

Dissertation is an exemplar for the quantitative study of treatment response. A mechanistic 

mathematical model of treatment response was proposed and iteratively refined to account for 

increasing levels of complexity observed in data. The ability for the model to describe cellular 

response to therapy in a wide range of doxorubicin (Chapter 2), co-treatment (Chapter 3), and co-

culture conditions (Chapter 4) demonstrates the promise of mathematical modeling in quantifying 

treatment response. By studying these various perturbations within a single mathematical 
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framework, this approach provides a means for more efficient discovery of predictive biomarkers 

and translation of those discoveries into patient care. 

 

5.2 Significance 

Fundamentally, treatment response is driven by patient-, tumor-, and cell-specific 

pharmacologic and biological processes. At the cellular level, these processes include drug 

metabolism and binding. At the cell population level, response is complicated by interactions 

among heterogeneous cell clones. In tumors and 3D culture, microenvironmental properties, 

including mechanical stiffness and composition, further shape the response to treatment. At the in 

vivo scale, treatment response is further impacted by the communication among various organ 

systems (circulatory, immune, etc.). Often, these many sources of variability are not explicitly 

considered in the development and evaluation of therapeutics (224). We hypothesize that this 

unsophisticated approach is partly responsible for the high failure rates of clinical trials of 

proposed anti-cancer therapies (14). 

This Dissertation provides a foundation from which the complexity detailed above can be 

approached. Specifically, we have developed and validated a biophysical model of the cellular 

response to doxorubicin in Chapter 2. This model withstood perturbation by agents that alter 

cellular pharmacology in Chapter 3, providing further validation of the mathematical model. 

Finally, the model was leveraged to study the effect of clonal interactions in a simple experimental 

model of heterogeneity in Chapter 4. Throughout this Dissertation, complexity was introduced 

modularly, and the model was iteratively refined to account for that complexity. We posit that this 

approach provides a more organized and precise approach to anti-cancer drug development. 

Previous in vitro methods used to evaluate drug efficacy provide limited quantitative data on the 

effect of various genetic and environmental markers on drug efficacy. Specifically, they do not 

provide the quantitative data needed to generate precise hypotheses in differing contexts. 

Conversely, the framework proposed in this dissertation has been shown to translate easily across 

various treatment and cell culture conditions. 

From a biological and clinical perspective, the TNBC designation is a label of exclusion. 

Breast cancer is canonically classified by the expression of estrogen, progesterone, and HER2 

receptors. TNBC lacks upregulation of these markers, limiting therapeutic options. This label has 

limited progress towards improved therapies as clinical trials are clouded by the genetic and 



 124 

phenotypic heterogeneity among triple negative tumors (139). The modeling framework we 

proposed provides a new lens through which TNBC treatment can be approached. We have 

demonstrated that a heterogeneous panel of TNBC cell lines respond similarly to doxorubicin 

therapy. While the absolute responses vary, the underlying physiology remains the same (i.e., the 

same mathematical model can describe treatment response in all of these lines). This work provides 

additional insight into the cellular phenotypes driving treatment response, thereby providing 

specific targets for future research. 

 

5.3 Innovation 

We developed a coupled experimental-modeling framework to understand the effects of a 

common chemotherapeutic, doxorubicin, under a range of experimental conditions. We highlight 

three particularly innovative components of this Dissertation: 

Temporal response to therapy. Traditionally, cytotoxic therapies are evaluated in a dose-

response framework via colorimetric assays, such as MTT and ATP assays (111). These 

approaches assess cell viability after exposure to a 105-fold range of drug concentrations for 72 

hours. The effects of these drugs are often summarized by potency metrics, such as EC50, the 

extracellular drug concentration eliciting a half-maximal effect. However, slight changes in 

experimental duration or growth conditions have been shown to significantly impact estimation of 

model parameters (130,131). Consequently, the predictive potential of such approaches is 

fundamentally limited, particularly in the setting of cytotoxic agent use in vivo, in which agents 

are applied as impulses and resilient populations, which demonstrate temporally-varying 

population growth rates following therapy, are often observed. The proposed model explicitly 

characterizes temporal aspects of treatment and subsequent response. We posit that this will allow 

for the in vitro observations to more easily scale to treatment response assessment in vivo.  

Incorporation of combination therapies into a unified mathematical framework. The 

concept of precisely targeting molecular deficits in tumors has long driven the development of 

anti-cancer therapies (225). Given a tumor’s complexity and ability to evolve, it is likely that 

rational combinations of these therapeutics will be needed to maintain durable responses (226). 

Rational combination therapies seek to optimally combine drugs to maximize response while 

minimizing toxicities. The promise of combination therapies relies on the precise dosing of these 

agents (189). The equivalent dose metric proposed in Chapter 3 provides an example of how 
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mathematical models can be leveraged to provide precise guidance on the dosing of combination 

therapies. While the proposed equivalent dose metric leverages a relatively simple model for its 

calculation, the concept of targeting a response and modulating underlying biological factors to 

achieve that response is readily extendable to other therapy combinations. 

Incorporation of heterogeneity into a unified mathematical framework. Intratumoral 

heterogeneity affects the response of tumors to therapy and presents a significant challenge to 

precision medicine initiatives (118,119,192). While mathematical modeling approaches are a 

powerful tool to study the effects of heterogeneity (18,196–198,214), these models often provide 

little mechanistic insight into tumor behavior. In Chapter 4, we proposed a framework that can be 

used to derive mechanistic, biophysical models describing clonal interactions. We posit the 

proposed high-throughput experimental-modeling platform can be leveraged to elucidate the 

biophysical basis of the interactions that underlie the emerging phenotypes observed in 

heterogeneous populations. In this way, these models can be used to generate precise hypotheses 

as to optimal means to improve treatment response in heterogeneous tumors. 

 

5.4 Limitations 

While the proposed model accurately describes treatment response observed in vitro, the 

model remains to be validated in vivo. Cells grown on plastic in 2D culture behave much 

differently than cells grown in 3D culture (227). The in vivo environment presents additional 

challenges relative to 3D culture. Specifically, the solid tumor microenvironment is constrained 

by perfusion, impairing nutrient and drug delivery (6).  

The coupled pharmacokinetic/pharmacodynamics model proposed in this work is robust to 

a host of doxorubicin, sensitizer, and co-culture conditions. However, in the current form, the 

approach is limited to drugs with intrinsic fluorescent properties. While we proposed a means to 

extend this to non-fluorescent agents in Chapter 3, the proposed approach remains to be validated 

with additional therapeutic agents. 

The heterogeneity investigated in Chapter 4 was experimentally induced. While similar 

inter-clonal interactions undoubtedly occur, the magnitude and character of these effects remain 

to be investigated in other heterogeneous cell populations. 

 

5.5 Future Directions and Recommendations 
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The coupled experimental-mathematical modeling system developed in this Dissertation 

offers a robust platform from which treatment response can be quantitatively investigated. To 

future investigators, I offer below four proposals that naturally and immediately follow the 

developments in this Dissertation.  

 

5.5.1 Translation in vivo 

It is the ultimate goal to scale the proposed model in vivo to create a framework in which 

therapies can be assessed in vitro and rapidly translated in vivo. While the proposed model can 

handle the temporally-varying plasma drug concentrations seen in vivo following injection of 

doxorubicin, the model must be extended to incorporate the effects of the tumor 

microenvironment. Specifically, tumor vasculature is functionally immature (89), affecting the 

distribution of doxorubicin in vivo (228). Doxorubicin has been found to diffuse only ~100 µm 

from vessels (228), and intratumoral doxorubicin gradients have been observed in patient 

samples (229). In keeping with the experimental-modeling framework used throughout this 

Dissertation, we propose leveraging dynamic contrast enhanced magnetic resonance imaging to 

estimate intratumoral doxorubicin distribution in an in vivo model of breast cancer. Just as the 

model was iteratively extended to incorporate cellular heterogeneity with use of an experimental 

system allowing for tracking of discrete sub-populations, so too can it be extended to incorporate 

tumor vasculature though an experimental system assessing vascular properties. We report on the 

preliminary data collected towards this proposal in Appendix A. 

I propose taking the same modular approach used in vitro to the in vivo study. After 

establishing the relationship between DCE-MRI and doxorubicin distribution, I recommend the 

interested investigator to modulate pharmacokinetic properties (e.g., drug clearance) and tumor 

vasculature (e.g., with anti-angiogenic agents) to rigorously investigate the relationship between 

pharmacokinetics, tumor vasculature, and treatment response. 

 

5.5.2 Explanation of Changing Proliferation Rates in Co-Culture System 

The biophysical basis of the changing proliferation rates of cell lines in co-culture 

conditions reported in Chapter 4 remains to be elucidated. While we hypothesize that this 

phenomenon is driven through metabolic pathways (230), further investigation is warranted. An 

alternative hypothesis is that the changing proliferation rates are secondary to factors secreted by 



 127 

each cell line. I suggest the role of secreted factors be investigated first with conditioned media 

experiments, and I point the interested investigator to a previous model that incorporates cell-line 

specific metabolic properties (210). 

 

5.5.3 Model of Multiple Treatments 

Dosing schemes with cytotoxic agents all follow a common pattern: cycles of a high dose 

nearing the maximum tolerated dose followed by a recovery period. The goal of this strategy is to 

maximize tumor cell kill, while trying to minimize adverse effects via drug holidays between each 

cycle. The model proposed in this Dissertation needs to be extended to incorporate the effects of 

multiple treatment cycles. With a model describing multiple treatment cycles, optimization 

routines can be used to identify optimal treatment regimens. I suggest a simple experimental 

paradigm first focusing on two treatments, each with a fixed doxorubicin dose and variable time 

between these doses. 

 

5.5.4 General Model for DNA-damaging Therapies 

DNA-damaging agents have long formed the basis of cancer therapies. Recent efforts have 

focused on improving the response to these agents by targeting DNA-damage response 

pathways (231). These various therapies, including doxorubicin, platinum salts, and radiation, 

induce DNA lesions which trigger a cascade of responses resulting in lesion repair or cell death. 

A source of inspiration for this Dissertation was the linear quadratic model used in radiation 

therapy. I posit that the model proposed in this Dissertation is simply the dynamic realization of 

the linear quadratic model. I encourage the motivated investigator to expand the proposed 

equivalent dose metric to the study of all DNA-damaging agents. This would provide a more 

precise understanding of the biological underpinnings of the response to each of these therapies. 

In this way, a robust framework would be developed to tailor DNA-damaging therapy to tumor-

specific biology. 

 

5.6 Conclusion 

The goal of precision medicine is to deliver the optimal therapy at the optimal dose on the 

optimal schedule. The current genetic-centric approach to precision cancer therapy has great merit 

in appropriately selecting therapies and identifying new pharmaceutical targets; however, it can 
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frequently overlook a host of patient-specific measures that influence response to therapy. 

Mathematical models of treatment response that incorporate patient-specific pharmacokinetic and 

pharmacodynamic measures offer the promise of tumor-specific treatment plans in which the dose 

and schedules of therapeutics are optimized in the same way the therapeutic is selected. The 

mechanistic models proposed and validated in this Dissertation provide the first step towards 

design of patient-specific treatment regimens. Specifically, we have shown that the treatment 

response of cell populations in vitro is predictable under various treatment and co-culture 

conditions. By incorporating these mechanistic models with the in vivo data available clinically, 

we envision a future for clinical oncology in which treatments can be precisely adjusted on a 

patient- and tumor-specific basis. 
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APPENDIX A 
 
 

CORRELATION OF DCE-MRI PARAMETERS WITH DOXORUBICIN 
DISTRIBUTION IN AN IN VIVO MODEL OF TRIPLE NEGATIVE BREAST CANCER 
 
 
A.1 Introduction and Contribution of Study 

It is our ultimate goal to scale the proposed in vitro pharmacokinetic/pharmacodynamic 

model to an in vivo model of breast cancer. While the model proposed in Chapter 2 can handle the 

temporally-varying plasma drug concentrations seen in vivo following injection of doxorubicin, 

the model must be extended to incorporate the spatial constraints of the tumor microenvironment. 

Specifically, we note that the distribution of doxorubicin in vivo is perfusion-limited as 

doxorubicin diffuses only 100 µm from vessels. In this Appendix, we provide initial data collected 

to assess the utility of dynamic contrast enhanced magnetic resonance imaging in estimating 

intratumoral doxorubicin distribution in an in vivo model of breast cancer. In this way, a framework 

leveraging non-invasive imaging could be established to scale the model in vivo. 

 

A.2 Abstract 

Doxorubicin is a standard-of-care cytotoxic agent that forms the basis of neoadjuvant 

chemotherapy regimens for a variety of malignancies, including triple negative breast cancer 

(TNBC). Despite its prevalence clinically, a quantitative understanding of how doxorubicin 

therapy alters tumor growth is currently lacking. Accordingly, treatment schedules with 

doxorubicin are generalized with doses adjusted only to account for patient body surface area or 

excessive toxicity. While the treatment plans are homogenous, the responses to doxorubicin 

therapy among TNBC patients are heterogeneous. This is potentially due to a host of factors, 

including high variability in tumor perfusion. Tumor perfusion affects both the intratumoral 

distribution of drug and the response to therapy. In order to correct for heterogeneous tumor 

perfusion, we propose the use of dynamic contrast enhanced (DCE) magnetic resonance imaging 

(MRI) to estimate intratumoral doxorubicin distribution in an in vivo model of TNBC. In this 

Appendix, we propose a registration framework to register histology to in vivo MRI, and we 

present initial in vivo imaging data collected to assess tumor vasculature via DCE-MRI. 
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A.3 Introduction 

Inducing and sustaining angiogenesis is a hallmark of cancer (87). Tumor vasculature is 

often morphologically and functionally immature. Relative to a healthy vasculature, tumor 

vasculature is tortuous and leaky with numerous blind endings and arteriovenous shunts. This 

impairs delivery of nutrients, causing local microenvironmental changes that alter the response to 

therapy (6,88,89). Further, significant heterogeneity in perfusion exists within a tumor, impacting 

both tumor growth and drug delivery (90). Differences in treatment response may arise due to 

variability in tumor perfusion.  

In clinical practice, doses of chemotherapeutic agents are often personalized through use 

of patient body surface area (BSA) (47,48). BSA was first proposed as a guide for chemotherapy 

dosing by Pinkel, noting that the accepted cytotoxic dose for pediatric and adult patients, and the 

dose used in laboratory animals correlated with BSA across those scales (49). While a BSA-based 

dosing strategy is of great practical utility for calculating doses for each patient, BSA correlates 

poorly with the underlying physiological processes that affect drug pharmacology (e.g., liver 

metabolism and glomerular filtration rate) (52,53). For example, in a study of 110 patients 

receiving doxorubicin therapy, doxorubicin clearance was found to weakly correlate with BSA (9). 

Despite the weak relationship between BSA and pharmacokinetics for several therapeutics, BSA 

remains widely used clinically to guide dosing. 

Evaluation of treatment response in solid tumors focuses exclusively on gross tumor 

volume changes as defined by the Response Evaluation Criteria in Solid Tumors (RECIST) (97). 

These criteria categorize response based on changes in the longest dimension of tumors over the 

course of therapy. These measurements do not consider the delivered dose of therapy despite the 

known heterogeneity in perfusion. Analysis of tumor images in this way provides little guidance 

on how to adjust treatments; indeed, it was never designed for such an application.  

The current framework of drug dosing and treatment response evaluation does not consider 

interpatient variability in pharmacokinetics or tumor perfusion, fundamentally limiting the 

realization of precision medicine (i.e., delivery of the optimal dose of the optimal therapy for each 

patient). This approach is imprecise relative to the dose-planning approaches used in radiotherapy. 

Specifically, radiation oncologists leverage X-ray computed tomography images to estimate 

radiation dose distribution (70). An analogous measure of chemotherapy dose is currently lacking. 

As chemotherapy is delivered via tumor vasculature, we propose to develop a spatially-resolved 
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measure of chemotherapy dose by coupling pharmacokinetic estimates of plasma drug 

concentrations to non-invasive, functional vascular imaging data. Whereas several methods have 

been proposed to estimate patient-specific pharmacokinetic parameters (80), relatively few 

methods have been developed to leverage vascular imaging data to estimate intratumoral drug 

distribution. Of note, Tagami et al. estimated intratumoral drug distribution via encapsulation of 

drug with a magnetic resonance imaging (MRI) contrast agent. Changes in MR T1 relaxation time 

were measured and correlated with distribution of drug within tumors (94). 

In this Appendix, we propose the use of DCE-MRI to estimate the intratumoral distribution 

of doxorubicin. Doxorubicin, which is a standard of care cytotoxic agent used in the treatment of 

TNBC, has been found to diffuse only 100 µm from vessels (228). Further, parameters extracted 

from DCE-MRI have been shown to be predictive of tumor response to therapy (92). In this 

preliminary work, we assess tumor vasculature in an in vivo model of breast cancer. We further 

propose a method to register ex vivo histology with in vivo MRI. We hypothesize that DCE-MRI 

parameters, which provide spatially-resolved measures of tumor perfusion will correlate with 

doxorubicin distribution, allowing for spatially-resolved intratumoral dose estimates. 

 

A.4 Methods 

A.4.1 In vivo Tumor Model 

Experiments were performed in the MDA-MB-231 model of TNBC. MDA-MB-231 cells 

were obtained through American Type Culture Collection (ATCC, http://www.atcc.org) and 

maintained in culture according to ATCC recommendations. Prior to injection, cells were grown 

to 80-90% confluency at 37°C in 5% CO2. 2 × 106 MDA-MB-231 cells suspended in 100 µL of 

serum-free DMEM media with 20% growth factor-reduced Matrigel were injected subcutaneously 

into the left flank of nude athymic female mice (Jackson Laboratories) (n = 12). Tumors were 

monitored weekly with caliper measurements (ellipsoid tumor volume = 

(length × width2) / 2) (232) and grown to an average of 502 (±282) mm3 at the time of imaging. 

All procedures were approved by our institution’s animal care and use committee. 

 

A.4.2 Doxorubicin Distribution 
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Doxorubicin hydrochloride was obtained from Sigma Aldrich and diluted to a stock 

concentration of 10 mM in sterile saline. 250 µL aliquots of doxorubicin were stored at -80°C prior 

to use. 

Each mouse received 20 mg/kg of doxorubicin diluted in 100 µL saline via IV jugular 

catheter injection. Immediately following treatment, mice were imaged via MRI, and tumors were 

harvested after the imaging experiments (approximately 3 hours after doxorubicin injection) for 

histology. Tumors were sliced in half in an orientation approximately matched to the imaging 

planes. Each half was subsequently embedded in optimal cutting temperature compound doped 

with 2% by volume Optiray 320 (Guerbet, Bloomington, IN), frozen in liquid nitrogen, and stored 

at -80°C prior to histological sectioning. Optiray is a radiopaque iodinated contrast agent. The ex 

vivo sample was imaged via micro-computed tomography (microCT) and digital photography to 

facilitate registration of histological sections to in vivo images. An overview of the experimental 

approach is shown in Figure A.1. 

 

A.4.3 Image Acquisition 

A.4.3.1 Magnetic Resonance Imaging 

Mice were imaged on a 9.4T MR scanner (Agilent Technologies, Palo Alto, CA) with a 38 

mm quadrature coil (Doty Scientific, Columbia, SC). During image acquisition, the mice were 

anesthetized using a 2%–98% isoflurane–oxygen mixture, and body temperature was maintained 

via a flow of warm air through the magnet bore. Each animal was placed in a custom-built restraint 

and loaded into the scanner. Temperature and respiratory rate were monitored throughout the 

imaging experiment. The imaging experiments outlined below follow those in Barnes et al (233). 

The tumor region was first localized via 3D gradient echo scout images. High-resolution 

T2-weighted images of the entire tumor volume were acquired using a fast spin echo pulse 

sequence with the following parameters: TR = 5500 ms, effective TE = 35.6 ms, 15 slices, 1 mm 

slice thickness, and an acquisition matrix of 128 × 128 × 15 over a 28 × 28 × 15 mm3 field of view 

(FOV). This yielded a voxel size of 0.22 × 0.22 × 1 mm3. 

Pre-contrast T1 maps were obtained using a multi-slice inversion recovery snapshot 

FLASH (Fast Low Angle Shot) gradient echo sequence with an adiabatic inversion pulse with 

seven inversion times (TI) ranging from 250 to 10,000 ms (250, 450, 830, 1,500, 2,700, 5,000, 

10,000 ms). Scan acquisition parameters were as follows: TR/TE = 100/2.1 ms, α = 25º, NEX = 2, 
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15 slices, 1 mm slice thickness, and an acquisition matrix of 64 × 64 over a 28 × 28 × 15 mm3 

FOV, yielding a voxel size of 0.44 × 0.44 × 1 mm3. Dynamic T1-weighted images were acquired 

using a spoiled gradient echo sequence at a temporal resolution of 12.8 s for approximately 20 min 

with the following parameters: TR/TE = 100 ms/2.1 ms, α = 25º, NEX = 2. These sequences used 

the same acquisition matrix and FOV as the pre-contrast T1 map. Baseline images were acquired 

for approximately 2.5 min before a bolus of 0.05 mmol/kg of Gado-DTPA (BioPAL, 

Worchester, MA) was administered through the jugular catheter over 3 seconds using an 

automated syringe pump (Harvard Apparatus, Holliston, MS) at a rate of 2.4 mL/min 

 

A.4.2.2 Micro-Computed Tomography 

The tumor volume, embedded in an iodinated contrast-doped OCT block, was imaged via 

microCT. The frozen tissue blocks were imaged on the Scanco vivaCT80 (Scanco Medical, 

Brüttisellen, Switzerland). The block was identified from a scout scan. The entire frozen block was 

imaged with an isotropic voxel size of 78 µm3 with X-ray source settings at 45 kVp and 177 mA, 

250 projections per 180°, and an integration time of 100 ms. 

 

A.4.2.3 Blockface imaging 

Following microCT, the tissue block was serially sectioned on a cryotome. With the use of 

a Canon EOS Rebel XTi digital camera with a 18- to 300-mm zoom lens, the block was digitally 

photographed every 50 μm prior to cutting. The in-plane resolution of these images was 70 μm 

isotropic. Every 1 mm, three 5-µm thick sections were mounted on slides for histological 

processing (described below). The blockface images were manually cropped to remove 

background, and the images were stacked to create a 3D blockface volume. To correct for slight 

block movements during the sectioning procedure, all images were aligned via a rigid registration 

to create an aligned gross tissue volume. 

 

A.4.2.4 Histology 

Following antigen retrieval, the tissue sections were stained with an anti-CD31 antibody 

(ab28364, Abcam Cambridge, MA) to visualize tumor vasculature. Doxorubicin is intrinsically 

fluorescent with excitation and emission peaks near 480 and 580 nm, respectively (234). A DAPI 

counter-stain was used to visualize nuclei. Slides were digitally scanned in brightfield (CD-31) 
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and fluorescence (DAPI and doxorubicin) with a 10× objective on the Aperio Versa 200 Slide 

Scanner (Leica Microsystems Inc, Buffalo Grove, IL). The brightfield and fluorescent images have 

resolutions of 0.547 µm and 0.648 µm isotropic, respectively. 

 

A.4.3 Image Registration 

To assess the correlation of doxorubicin distribution with in vivo MRI, the histological 

sections must first be registered to in vivo images. We propose the registration scheme outlined in 

Figure A.1. Briefly, the blockface volume is registered to the microCT volume via a rigid 

registration. The high resolution T2-weighted anatomical image is then registered to the co-

registered microCT/blockface volume via a nonrigid registration procedure. Specifically, the 

microCT is used to delineate the frozen tumor sample boundary, and the textural information in 

the blockface volume is used to drive the elastic registration. Finally, the histological sections are 

registered to their corresponding blockface images. In this way, the histological sections can be 

aligned with the in vivo MRI. 

 

A.4.4 Image processing 

A region of interest (ROI) was manually drawn around the tumor using the T2-weighted 

images, and only those voxels within the tumor were used in the analyses outlined below. Pre-

contrast T1 maps were computed by fitting data collected from the inversion recovery snapshot 

sequence. This signal from these experiments can be described: 
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where S0 and S are the signal intensities at equilibrium and the inversion time (TI), respectively. 

The signal intensity measured from the spoiled gradient echo sequence is given by: 
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where S0 is a constant describing the scanner gain and proton density, α is the flip angle, and TR 

is the repetition time (we assume that TE ≪ T2
*). Further, we assume the fast exchange limit (FXL) 

model (235), and thus the longitudinal relaxation time is described by: 
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Figure A.1: Overview of registration procedure. Immediately following MRI experiments, the 
tumor is harvested and sliced in half in an orientation approximately matched to the imaging 
planes. Each half is subsequently embedded in optimal cutting temperature compound doped with 
2% by volume Optiray 320 and flash-frozen. The frozen tissue blocks are imaged via microCT 
and subsequently sectioned. During sectioning, the exposed blockface is serially photographed to 
construct a gross tissue volume. Finally, the histology slides are imaged via brightfield and 
fluorescence. These slides are then registered to the gross tissue volume. The gross tissue volume, 
in turn, is registered to the microCT image. Finally, this volume is registered to a high resolution 
anatomical MR image. In this way, histology sections can be registered to in vivo MRI. 
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where r is the relaxivity for Gado-DTPA at 9.4T (4.7 mM−1s−1), Ct (t) is the time-varying 

concentration of the contrast in the tissue, and T10 is the pre-contrast T1 value. The dynamic 

T1-weighted data can then be fit to the standard Tofts–Kety model: 
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where Ktrans is the contrast agent transfer rate, Cp (t) is the concentration of contrast in the blood 

plasma, and ve is the extravascular extracellular volume fraction. Physiologically, Ktrans is related 

to vessel perfusion and permeability. A population-derived vascular input function was used for 

Cp (t) (236). Voxel-wise estimates were made for each parameter (Ktrans and ve) using a nonlinear 

least squares optimization routine implemented in MATLAB (Natick, MA). 

 

A.5 Results 

A.5.1 Sample Images 

 A sample in vivo MRI dataset is illustrated in Figure A.2. The T1-weighted timecourses are 

analyzed with the standard Tofts-Kety model to extract parameter maps. These maps illustrate a 

common pattern of vascularity in these tumors. The tumor periphery is often well perfused, and 

correspondingly high Ktrans values are observed in these regions. The tumor core often become 

necrotic due to poor perfusion. This is reflected by the small Ktrans values in the tumor centers. 

The ex vivo images corresponding to the tumor shown in Figure A.2 are shown in 

Figure A.3. The blockface images provide intratumoral textural information while the microCT 

image provides a means to precisely segment the tumor within the block. The image sets can, in 

theory, be combined to perform a non-rigid registration to the in vivo dataset. 

 

A.6 Discussion 

Building towards patient-specific treatment response predictions, we proposed and 

validated a coupled pharmacokinetic/pharmacodynamic model of doxorubicin treatment response 

in vitro (177). Scaling the model to the in vivo environment presents several challenges. 

Specifically, tumor microenvironmental heterogeneity can significantly impact response to 

therapy. In anticipation of this heterogeneity, we propose the use of quantitative MRI to account 

for variable tumor perfusion. In this work, we present initial data to assess the utility of DCE-MRI 

to estimate intratumoral distribution of doxorubicin. We note that DCE-MRI provides a functional 
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Figure A.2: Sample in vivo MRI dataset. T2-weighted anatomical images for each mouse are first 
collected using a fast spin echo sequence (a – c). Following estimation of the T10 map, the mouse 
is injected with contrast agent and serially imaged. The T1-weighted image timecourses are 
analyzed with the standard Tofts-Kety to measure tumor vascular properties. Voxel-wise maps of 
Ktrans are shown in (d – f). High Ktrans values are observed on the tumor periphery with relatively 
small values of Ktrans in the tumor center  
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Figure A.3: Sample ex vivo dataset. The frozen tissue block is imaged via digital photography (a) 
and X-ray micro-computed tomography (b). The blockface images provide intratumoral textural 
information that is not available on the microCT image. The microCT provides clearly-delineated 
boundaries of each tumor sample. Of note, the OCT used to freeze this block was doped with 0.5% 
by volume Optiray 320. 
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assessment of tumor vasculature and that microCT and blockface imaging represent a promising 

approach to register histology to in vivo MRI. 

Given the preliminary nature of this work, the limitations are numerous. The registration 

pipeline remains to be constructed, and we were unable to collect histological images of 

doxorubicin distribution. Additionally, the current dataset was collected at a single timepoint 

following doxorubicin injection. Further, it is likely that increased image resolutions will be 

necessary to establish the relationship between drug distribution and parameter values derived 

from DCE-MRI studies. 

Non-invasive imaging represents a promising pathway to scale the proposed treatment 

response model in vivo. To realize this goal, a relationship between imaging measures and 

intratumoral drug distribution must first be established. With this proposal, we aim to develop a 

precise measure of delivered chemotherapeutic dose to complement treatment response 

measurements. 
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